TIMEEVENT DESCRIPTIONLOCATIONIMAGES

UNIVERSE
1,000,000,000,000 YBN
1) We are a tiny part of a universe
that is made of an infinite amount of
space, matter and time.

 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

990,000,000,000 YBN
2) There is more space than matter.

MORE INFO
[1]
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

980,000,000,000 YBN
3) All matter is made of particles of
light.10 Light particles are the base
unit of all matter from the tiniest
particles to the largest galaxies.11
In this sense light particles are the
most basic atoms.12

The basic order of matter from smaller
to larger is light particles, electrons
and positrons, muons, protons and
antiprotons, atoms, molecules, living
objects, planets, stars, globular
clusters, galaxies, and then galactic
clusters.13

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
10. ^ Ted Huntington.
11. ^ Ted
Huntington.
12. ^ Ted Huntington.
13. ^ Ted Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

970,000,000,000 YBN
11) The universe has no start or end.
The same light particles that have
always been, continue to move in the
space that has always been.5

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

960,000,000,001 YBN
5) Matter and motion can never be
created or destroyed. Matter can never
be converted into motion, and motion
can never be converted into matter.5

FO
OTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

950,000,000,000 YBN
6) Light particles become trapped with
each other and so form structures such
as protons, atoms, molecules, planets,
stars, galaxies, and clusters of
galaxies.6

This accumulation of light particles
into atoms may be the result of
particle collision, gravitation, or a
combination of both.7

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington
6. ^ Ted Huntington.
7. ^ Ted Huntington
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

940,000,000,000 YBN
7) All of the billions of galaxies we
see are only a tiny part of the
universe. We will never see most of the
universe because no light particles
from there can ever reach us.6

Most galaxies are too far away for even
one particle of light they emit to be
going in the exact direction of our
tiny location, and all the light
particles they emit are captured by
atoms in between there and here.7

As telescopes grow larger, the number
of galaxies and the distance we can see
will increase.8

FOOTNOTES
1. ^ Ted Huntington
2. ^ Ted Huntington
3. ^ Ted Huntington
4. ^ Ted
Huntington
5. ^ Ted Huntington.
6. ^ Ted Huntington
7. ^ Ted Huntington.
8. ^ Ted
Huntington.

MORE INFO
[1] Carl Sagan, "Cosmos", Carl
Sagan Productions, KCET Los Angeles,
(1980). (estimate of how many galaxies)
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

935,000,000,000 YBN
4) There is a pattern in the universe.
Light particles move from highly dense
volumes of space to volumes of less
density. In low density volumes, light
particles slowly accumulate to form
atoms of Hydrogen and Helium which
exist as gas clouds (like the
Magellanic Clouds or Orion nebula).
These gas clouds, called nebulae
continue to accumulate trapped light
particles. At points of high density
planets and stars form and the cloud is
eventually dense enough to become a
galaxy of stars. The stars emit light
particles back out to the rest of the
universe, where the light again becomes
trapped and forms new clouds. Around
each star are many planets and pieces
of matter. On many of the planets
rotating around stars, living objects
evolve that can copy themselves by
converting matter around them into more
of them. Living objects need matter to
replace matter lost from the constant
emitting of light particles (decay).
Like bacteria, these living objects
grow in number, with the most
successful organisms occupying and
moving around many stars. These
advanced organisms then move the groups
of stars they control, as a globular
cluster, away from the plane of the
spiral galaxy. As time continues, all
of the stars of a galaxy are occupied
by living objects who have organized
their stars into globular clusters.
These globular clusters together form
an elliptical galaxy, and then finally
a globular galaxy. The globular galaxy
may then exist for a long time living
off the matter in stars, in addition to
matter from external sources.

So free light particles are trapped
into volumes of space that grow in
density first forming atoms, then gas
clouds, then stars, a spiral galaxy, an
elliptical galaxy, and finally a
globular galaxy.5

Globular galaxies at our scale may be
light particles at a much larger scale,
just as light particles at our scale
may be globular galaxies at a much
smaller scale. This system may go on
infinitely in both larger and smaller
scale.

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg


[2] LDN 1622: Dark Nebula in
Orion Data: Digitized Sky Survey
(POSS-II), Color Composite: Noel
Carboni Explanation: The silhouette
of an intriguing dark nebula inhabits
this cosmic scene, based on images from
the Palomar Observatory Sky Survey.
Lynds' Dark Nebula (LDN) 1622 appears
against a faint background of glowing
hydrogen gas only easily seen in long
telescopic exposures of the region. LDN
1622 lies near the plane of our Milky
Way Galaxy, close on the sky to
Barnard's Loop - a large cloud
surrounding the rich complex of
emission nebulae found in the Belt and
Sword of Orion. But the obscuring dust
of LDN 1622 is thought to be much
closer than Orion's more famous
nebulae, perhaps only 500 light-years
away. At that distance, this 1 degree
wide field of view would span less than
10 light-years. PD
source: http://apod.nasa.gov/apod/image/
0705/ldn1622_carboni.jpg

930,000,000,000 YBN
8) An expanding universe seems unlikely
to me. The supposed red-shifted calcium
absorption lines may be a mistaken
observation, for one reason because
spectrum size changes the position of
spectral lines (as clearly shown in the
1936 Humason photo)5 , and because the
distance of a light source changes the
position, but not the frequency of
spectral lines6 .

FOOTNOTES
1. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

2. ^ Ted Huntington, "Spectral line
position depends on distance of light
source - Bragg Equation Effect",
04/03/2012. http://tedhuntington.com/pa
per_Bragg.htm

3. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

4. ^ Ted Huntington, "Spectral line
position depends on distance of light
source - Bragg Equation Effect",
04/03/2012. http://tedhuntington.com/pa
per_Bragg.htm

5. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

6. ^ Ted Huntington, "Spectral line
position depends on distance of light
source - Bragg Equation Effect",
04/03/2012. http://tedhuntington.com/pa
per_Bragg.htm

 
[1] Image of a spectral line shift from
a close and distant fluorescent
lamp. GNU
source: Ted Huntington


[2] The simple trigonometry that shows
that two light sources at different
distances cannot achieve the same angle
at the same location on a horizontal
diffraction grating. GNU
source: Ted Huntington


LIFE
165,000,000,000 YBN
13) The Milky Way Nebula starts to
form.5

Galaxies may form from accumulation of
light particles and from the collision
of two or more galaxies.

If a galaxy is viewed as an exponential
accumulation of light particles
starting from a single light particle
up until 500 billion stars, only in the
last 16% of that time would a galaxy
have enough matter for even a single
star.6

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
 
[1] Description This image is
mosaic of multiple shots on
large-format film. It comprises all 360
degrees of the galaxy from our vantage.
Photography was done in Ft. Davis,
Texas for the Northern hemisphere shots
and from Broken Hill, New South Wales,
Australia, for the southern portions.
Note the dust lanes, which obscure our
view of some features beyond them.
Infrared imaging reaches into these
regions, and radio astronomy can look
all the way through with less detail.
The very center, however, shows a
window to the farther side. In the
center, stars are mostly very old and
this causes the more yellow color. The
final file is 1.5GB, and resolves
details of less than one arcminute.
Faintest stars are magnitude 11. There
are 21 pixels of horizontal overlap at
the ends, with the right end slightly
brighter than the corresponding pixels
on the left. Date Source
http://www.digitalskyllc.com (The
image was uploaded to en.wiki at 17:16,
21 September 2006 by Twtunes. Author
Digital Sky LLC CC
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0a/Milkyway_pan1.jpg


[2] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

33,000,000,000 YBN
6180) The first star in the Milky Way
Galaxy forms.8

Stars may form from the accumulation of
matter or from collisions of two or
more large bodies. As time goes by,
less collisions occur around a star,
because most smaller objects are
absorbed by the star and planets.9

Stars and planets may have centers of
densely packed unmoving light
particles. The less dense and colder
area near the surface of planets and
stars may allow atoms and molecules to
form and stay together. Many light
particles must move through the
internal maze of matter inside planets
and stars to eventually reach the
surface and escape into empty space.10


FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
10. ^ Ted Huntington.
 
[1] Description English: M8 Lagoon
Nebula in Sagittarius Date 26 June
2009 Source Own
work Author Hewholooks CC
source: http://upload.wikimedia.org/wiki
pedia/commons/2/2f/M8HunterWilson.jpg


[2] NGC 7023: The Iris Nebula Credit
& Copyright: Daniel López,
IAC Explanation: Like delicate cosmic
petals, these clouds of interstellar
dust and gas have blossomed 1,300
light-years away in the fertile star
fields of the constellation Cepheus.
Sometimes called the Iris Nebula and
dutifully cataloged as NGC 7023, this
is not the only nebula in the sky to
evoke the imagery of flowers. Still,
this beautiful digital image shows off
the Iris Nebula's range of colors and
symmetries in impressive detail. Within
the Iris, dusty nebular material
surrounds a hot, young star. The
dominant color of the brighter
reflection nebula is blue,
characteristic of dust grains
reflecting starlight. Central filaments
of the dusty clouds glow with a faint
reddish photoluminesence as some dust
grains effectively convert the star's
invisible ultraviolet radiation to
visible red light. Infrared
observations indicate that this nebula
may contain complex carbon molecules
known as PAHs. As shown here, the
bright blue portion of the Iris Nebula
is about six light-years across. PD
source: http://apod.nasa.gov/apod/image/
1011/IRIS_IAC80_DLopez900c.jpg

22,000,000,000 YBN
6181) Living objects in the Milky Way
Galaxy reach another star using a ship,
perhaps 5 billion years after the first
stars formed.5

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] close up
of: Description English: M8 Lagoon
Nebula in Sagittarius Date 26 June
2009 Source Own
work Author Hewholooks CC
source: http://upload.wikimedia.org/wiki
pedia/commons/2/2f/M8HunterWilson.jpg


[2] Description The photograph,
taken by NASA's Hubble Space Telescope,
captures a small region within M17, a
hotbed of star formation. M17, also
known as the Omega or Swan Nebula, is
located about 5500 light-years away in
the constellation Sagittarius. The
wave-like patterns of gas have been
sculpted and illuminated by a torrent
of ultraviolet radiation from young,
massive stars, which lie outside the
picture to the upper left. The glow of
these patterns accentuates the
three-dimensional structure of the
gases. The ultraviolet radiation is
carving and heating the surfaces of
cold hydrogen gas clouds. The warmed
surfaces glow orange and red in this
photograph. The intense heat and
pressure cause some material to stream
away from those surfaces, creating the
glowing veil of even hotter greenish
gas that masks background structures.
The pressure on the tips of the waves
may trigger new star formation within
them. The image, roughly 3
light-years across, was taken May
29-30, 1999, with the Wide Field
Planetary Camera 2. The colors in the
image represent various gases. Red
represents sulfur; green, hydrogen; and
blue, oxygen. Date 24 April
2003 Source
http://spacetelescope.org/images/html/he
ic0305a.html (direct link)
http://hubblesite.org/newscenter/archive
/releases/2003/13/image/a/ Author
NASA, ESA and J. Hester (ASU) PD
source: http://upload.wikimedia.org/wiki
pedia/commons/7/72/Omega_Nebula.jpg

10,000,000,000 YBN
6182) The first globular cluster of
100,000 stars forms in the Milky Way
Galaxy.5

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] Description The globular
cluster Omega Centauri — with as many
as ten million stars — is seen in all
its splendour in this image captured
with the WFI camera from ESO's La Silla
Observatory. The image shows only the
central part of the cluster — about
the size of the full moon on the sky
(half a degree). North is up, East is
to the left. This colour image is a
composite of B, V and I filtered
images. Note that because WFI is
equipped with a mosaic detector, there
are two small gaps in the image which
were filled with lower quality data
from the Digitized Sky Survey. Date
2008 Source
http://www.eso.org/public/outreach/
press-rel/pr-2008/phot-44-08.html Autho
r ESO CC
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/e/e6/Omega_Centauri_
by_ESO.jpg/638px-Omega_Centauri_by_ESO.j
pg


[2] Description This image is
mosaic of multiple shots on
large-format film. It comprises all 360
degrees of the galaxy from our vantage.
Photography was done in Ft. Davis,
Texas for the Northern hemisphere shots
and from Broken Hill, New South Wales,
Australia, for the southern portions.
Note the dust lanes, which obscure our
view of some features beyond them.
Infrared imaging reaches into these
regions, and radio astronomy can look
all the way through with less detail.
The very center, however, shows a
window to the farther side. In the
center, stars are mostly very old and
this causes the more yellow color. The
final file is 1.5GB, and resolves
details of less than one arcminute.
Faintest stars are magnitude 11. There
are 21 pixels of horizontal overlap at
the ends, with the right end slightly
brighter than the corresponding pixels
on the left. Date Source
http://www.digitalskyllc.com (The
image was uploaded to en.wiki at 17:16,
21 September 2006 by Twtunes. Author
Digital Sky LLC CC
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0a/Milkyway_pan1.jpg

5,500,000,000 YBN
6
16) The star the Earth orbits forms.5
F
OOTNOTES
1. ^ Ted Huntington
2. ^ Ted Huntington
3. ^ Ted Huntington
4. ^ Ted
Huntington
5. ^ Ted Huntington
6. ^ Ted Huntington, guess

MORE INFO
[1]
http://zebu.uoregon.edu/~imamura/208/mar
1/nucleo.html
(with image of onion
skin layers)
[2] another person declares star
inside to be similar to planets: iron,
oxygen, nickel, etc. do not support
standard solar
model. star_inside_iron.pdf
 
[1] Description English: The Sun
photographed by the Atmospheric Imaging
Assembly (AIA 304) of NASA's Solar
Dynamics Observatory (SDO). This is
a false color image of the sun observed
in the extreme ultraviolet region of
the spectrum. For example,similar
image Français : Le soleil,
photographié depuis le Solar Dynamics
Observatory de la NASA. Date
2010-08-19T00:32:21Z (ISO
8601) Source NASA/SDO
(AIA). Author NASA/SDO (AIA). PD

source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/b/b4/The_Sun_by_the_
Atmospheric_Imaging_Assembly_of_NASAs_So
lar_Dynamics_Observatory_-_20100819.jpg/
628px-The_Sun_by_the_Atmospheric_Imaging
_Assembly_of_NASAs_Solar_Dynamics_Observ
atory_-_20100819.jpg


[2] Summary Description The star
formation region N11B in the LMC taken
by WFPC2 on the NASA/ESA Hubble Space
Telescope. Date Source
http://www.spacetelescope.org/image
s/html/heic0411a.html Author
NASA/ESA and the Hubble Heritage
Team
(AURA/STScI)/HEIC Permission (Reusing
this file) ESA Public Domain, as
per
http://www.spacetelescope.org/copyright.
html PD
source: http://upload.wikimedia.org/wiki
pedia/commons/6/6c/Heic0411a.jpg

5,500,000,000 YBN
9
17) Planets form around our star from
many collisions. Like the star, they
are red hot with liquid rock and metals
on the surface. Lighter atoms move to
the surface of the planets. Larger
planets are surrounded by gas.6

As the number of collisions decreases,
and smaller objects are absorbed by the
star and planets, the average
temperature of the star system is
lowered. As the temperature of the
planets and moons decreases, their
surfaces solidify, and water and other
molecules condense at the surface.7

Perhaps most outer planets are larger,
because their orbit covers a larger
space which includes more matter.8

FOOT
NOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
 
[1] an 19, 2005 � For the past five
days, forecasters at the NOAA Space
Environment Center in Boulder, Colo.,
have observed all types of space
weather: radio blackouts, solar
radiation storms and geomagnetic
storms. Currently, space weather
forecasters are observing a moderate
geomagnetic storm (G-2 on the NOAA
Space Weather Scales) and a minor (S-1)
solar radiation storm. Earlier
Wednesday an X-class flare produced a
strong (R-3) radio blackout. (Click
image for larger view of the sun taken
on Jan. 19, 2005, at 2:19 p.m. EST.
Click here for high resolution version,
which is a large file. Please credit
European Space Agency-NASA.) PD
source: http://www.noaanews.noaa.gov/sto
ries2005/images/sun-soho011905-1919z.jpg


[2] This artist’s impression shows
the disk of gas and cosmic dust around
the young star HD 142527. Astronomers
using the Atacama Large
Millimeter/submillimeter Array (ALMA)
telescope have seen vast streams of gas
flowing across the gap in the disc
UNKNOWN
source: http://l2.yimg.com/bt/api/res/1.
2/kB0xEBWbOe3fUGcRF7Y3RA--/YXBwaWQ9eW5ld
3M7Zmk9aW5zZXQ7aD00MDg7cT03OTt3PTU3NQ--/
http://media.zenfs.com/en_US/News/SPACE.
com/Never-Before-Seen_Stage_of_Planet_Bi
rth-893372caafae611ec5e71458c2f79fb8

4,600,000,000 YBN
21) The moon of Earth is captured.4

The moon of Earth may form as a planet
that is captured by the Earth, or a
planet that collides with the Earth and
then reforms from the remaining matter
of the collision, or forms in orbit of
the Earth at the same time the Earth
forms.5

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] Image of moon superimposed on
Venus PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/dd/Full_Moon_Luc_Viatour
.jpg


[2] an 19, 2005 � For the past five
days, forecasters at the NOAA Space
Environment Center in Boulder, Colo.,
have observed all types of space
weather: radio blackouts, solar
radiation storms and geomagnetic
storms. Currently, space weather
forecasters are observing a moderate
geomagnetic storm (G-2 on the NOAA
Space Weather Scales) and a minor (S-1)
solar radiation storm. Earlier
Wednesday an X-class flare produced a
strong (R-3) radio blackout. (Click
image for larger view of the sun taken
on Jan. 19, 2005, at 2:19 p.m. EST.
Click here for high resolution version,
which is a large file. Please credit
European Space Agency-NASA.) PD
source: http://www.noaanews.noaa.gov/sto
ries2005/images/sun-soho011905-1919z.jpg

4,600,000,000 YBN
6 7
30) Planet Earth cools. Molten liquid
rock turns into a solid thin crust.
Water condenses and falls to the
surface, filling the lowest parts of
the land to make the first Earth
oceans, lakes, and rivers.5

FOOTNOTES
1. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

2. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

3. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

4. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

5. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

6. ^ Ted Huntington.
7. ^ Ted Huntington.
 
[1] USGS Photo by Tim Orr Pahoehoe
lava breaks out of the crust along a
flow margin PD
source: http://www.nps.gov/havo/parkmgmt
/upload/havo_manage_usgs_20080304_tro381
7_x800.jpg


[2] English: Ultraviolet image of
Venus' clouds as seen by the Pioneer
Venus Orbiter (February 26, 1979). The
immense C- or Y-shaped features which
are visible only in these wavelengths
are individually short lived, but
reform often enough to be considered a
permanent feature of Venus' clouds. The
mechanism by which Venus' clouds absorb
ultraviolet is not well understood. PD

source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/b/bc/Venuspioneeruv.
jpg/953px-Venuspioneeruv.jpg

4,600,000,000 YBN
7
50) The start of the "Precambrian" and
the Hadean {HA DEen5 } Eon.6

FOOTNOTES
1. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Mar. 2012.
http://www.answers.com/topic/hadean-time

2. ^
http://www.geosociety.org/science/timesc
ale/

3. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Mar. 2012.
http://www.answers.com/topic/hadean-time

4. ^
http://www.geosociety.org/science/timesc
ale/

5. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Mar. 2012.
http://www.answers.com/topic/hadean-time

6. ^
http://www.geosociety.org/science/timesc
ale/

7. ^ "Divisions of Geologic Time",
2010,
USGS http://pubs.usgs.gov/fs/2010/3059/
pdf/FS10-3059.pdf

 
[1] Geologic Time Scale 2009 UNKNOWN
source: http://www.geosociety.org/scienc
e/timescale/timescl.pdf

4,571,000,000 YBN
7 8
31) The oldest meteorite yet found on
Earth: 4.57 billion years old.5 6

FOOTN
OTES
1. ^
http://www.sciencemag.org/cgi/content/fu
ll/288/5472/1819?maxtoshow=&HITS=10&hits
=10&RESULTFORMAT=&fulltext=zag+morocco&s
earchid=1129920472874_9236&stored_search
=&FIRSTINDEX=0#RF2

2. ^
http://news.bbc.co.uk/1/hi/sci/tech/7830
48.stm

3. ^
http://www.sciencemag.org/cgi/content/fu
ll/288/5472/1819?maxtoshow=&HITS=10&hits
=10&RESULTFORMAT=&fulltext=zag+morocco&s
earchid=1129920472874_9236&stored_search
=&FIRSTINDEX=0#RF2

4. ^
http://news.bbc.co.uk/1/hi/sci/tech/7830
48.stm

5. ^
http://www.sciencemag.org/cgi/content/fu
ll/288/5472/1819?maxtoshow=&HITS=10&hits
=10&RESULTFORMAT=&fulltext=zag+morocco&s
earchid=1129920472874_9236&stored_search
=&FIRSTINDEX=0#RF2

6. ^
http://news.bbc.co.uk/1/hi/sci/tech/7830
48.stm

7. ^
http://www.sciencemag.org/cgi/content/fu
ll/288/5472/1819?maxtoshow=&HITS=10&hits
=10&RESULTFORMAT=&fulltext=zag+morocco&s
earchid=1129920472874_9236&stored_search
=&FIRSTINDEX=0#RF2
(4.7 +- .2 billion
years)
8. ^ sci has 4.7 +- .2 by where did
4.571 come from?
 
[1] The ''Zag'' meteorite fell to Earth
in 1988 COPYRIGHTED
source: http://news.bbc.co.uk/1/hi/sci/t
ech/783048.stm

4,530,000,000 YBN
33) The oldest Moon rock returned from
the Moon (4.53 billions old).3

FOOTNOTE
S
1. ^
http://www.nasm.si.edu/exhibitions/attm/
atmimages/S73-15446.f.jpg

http://www.nasm.si.edu/exhibitions/attm/
nojs/wl.br.1.html
2. ^
http://www.nasm.si.edu/exhibitions/attm/
atmimages/S73-15446.f.jpg

http://www.nasm.si.edu/exhibitions/attm/
nojs/wl.br.1.html
3. ^
http://www.nasm.si.edu/exhibitions/attm/
atmimages/S73-15446.f.jpg

http://www.nasm.si.edu/exhibitions/attm/
nojs/wl.br.1.html
 
[1]
http://www.nasm.si.edu/exhibitions/attm/
atmimages/S73-15446.f.jpg
http://www.nasm.si.edu/exhibitions/attm/
nojs/wl.br.1.html
source:

4,404,000,000 YBN
34) The oldest "terrestrial" zircon;
evidence that the crust and liquid
water are on the surface of Earth. A
terrestrial zircon is not from a
meteorite.3

FOOTNOTES
1. ^
http://www.nature.com/nature/links/01011
1/010111-1.html

2. ^
http://www.nature.com/nature/links/01011
1/010111-1.html

3. ^
http://www.nature.com/nature/links/01011
1/010111-1.html

 
[1]
http://www.geology.wisc.edu/zircon/Earli
est%20Piece/Images/8.jpg
source:

4,400,000,000 YBN
18) Larger molecules form on Earth,
like amino acids, phosphates, and
sugars, the components of living
objects.10

These molecules are made in the oceans,
fresh water, and atmosphere of Earth
(and other planets) by lightning, light
particles with high frequency from the
Sun, and from ocean floor volcanoes.11


The initial building blocks of living
objects are easily formed, but
assembling them into longer-chain
molecules, or polymers, is more
difficult. Amino acids link up to form
polymers called proteins, simple fatty
acids plus alcohols link up to form
lipids (oils and fats), simple sugars
like glucose and sucrose link together
to form complex carbohydrates and
starches, and finally, the nucleotide
bases (plus phosphates and sugars) link
up to form nucleic acids, the genetic
code of organisms, known as RNA and
DNA.12

Perhaps all proteins, carbohydrates,
lipids and DNA are strictly the
products of living objects, while RNA
can assemble without the help of any
living objects.13

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Donald
Prothero, "Evolution What the Fossils
Say and Why It Matters", 2007, p150.
5. ^ Ted
Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Donald Prothero,
"Evolution What the Fossils Say and Why
It Matters", 2007, p150.
9. ^ Ted Huntington.
10. ^ Ted
Huntington.
11. ^ Ted Huntington.
12. ^ Donald Prothero,
"Evolution What the Fossils Say and Why
It Matters", 2007, p150.
13. ^ Ted
Huntington.
 
[1] The two optical isomers of alanine,
D-Alanine and
L-Alanine D-glucose BOTH PD
source: http://upload.wikimedia.org/wiki
pedia/commons/6/65/D%2BL-Alanine.gif
and http://upload.wikimedia.org/wikiped
ia/commons/thumb/5/5a/D-glucose-chain-3D
-balls.png/640px-D-glucose-chain-3D-ball
s.png

4,395,000,000 YBN
19) Nucleic acids form on Earth.
Ribonucleic acid (RNA) may be the first
nucleic acid to form. One of these RNA
molecules may be the ancestor of all of
life on Earth.5

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] Ribonucleic acid (English
pronunciation:
/raɪbɵ.njuːˌkleɪ.ɨk ˈæsɪd/),
or RNA, is one of the three major
macromolecules (along with DNA and
proteins) that are essential for all
known forms of life. UNKNOWN
source: http://dna-rna.net/wp-content/up
loads/2011/07/rna.jpg

4,385,000,000 YBN
167) The first proteins on Earth.
Transfer RNA molecules evolve (tRNA),
and link amimo acids into proteins
using other RNA molecules ("messenger"
or mRNA molecules), as a template.

This protein assembly system is the
main system responsible for all the
proteins on Earth.6

Part of each tRNA molecule bonds with a
specific amino acid, while another part
has a 3 nucleotide sequence that bonds
with an opposite matching 3 nucleotide
sequence on an mRNA molecule.7

Perhaps this system, where tRNA
molecules build proteins directly from
free floating RNA strands, evolves
before the first ribosome and the first
cell.8

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
 
[1] Description English:
Illustration of tRNA building peptide
chain Date 1 March 2009 Source
Own work Author
Boumphreyfr CC
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0f/Peptide_syn.png


[2] Source : ''Role of the
Ribosome'' University of Texas Medical
Branch UNKNOWN
source: http://ead.univ-angers.fr/~jaspa
rd/Page2/COURS/7RelStructFonction/2Bioch
imie/1SyntheseProteines/3Figures/4Organi
tes/2Ribosomes/6Polysome.gif

4,380,000,000 YBN
40) A protein can copy RNA. This
protein is called an RNA polymerase
{PoL-u-mu-rAS5 }.

For the first time, a nucleic acid
functions both as a template for
building proteins (with the help of
tRNA molecules) and also as a template
for building other nucleic acid
molecules.6

An RNA polymerase must be one of the
first useful proteins to be assembled
by the early (presumably) precellular
protein production system. Eventually
an RNA strand that codes for the RNA
polymerase and the tRNA needed to make
the polymerase may be copied many
times.

FOOTNOTES
1. ^ "Polymerase." Dictionary.com
Unabridged. Random House, Inc. 26 Jan.
2013.
http://dictionary.reference.com/browse/P
olymerase>.
2. ^ Ted Huntington.
3. ^ "Polymerase."
Dictionary.com Unabridged. Random
House, Inc. 26 Jan. 2013.
http://dictionary.reference.com/browse/P
olymerase>.
4. ^ Ted Huntington.
5. ^ "Polymerase."
Dictionary.com Unabridged. Random
House, Inc. 26 Jan. 2013.
http://dictionary.reference.com/browse/P
olymerase>.
6. ^ Ted Huntington.

MORE INFO
[1] Schuppli, Daniel et al.
“Altered 3′-terminal RNA Structure
in Phage Qβ Adapted to Host
Factor-less Escherichia Coli.”
Proceedings of the National Academy of
Sciences 94.19 (1997): 10239 –10242.
Print. http://www.pnas.org/content/94/1
9/10239.abstract

 
[1] RNA is a versatile molecule. In its
most familiar role, RNA acts as an
intermediary, carrying genetic
information from the DNA to the
machinery of protein synthesis. RNA
also plays more active roles,
performing many of the catalytic and
recognition functions normally reserved
for proteins. In fact, most of the RNA
in cells is found in ribosomes--our
protein-synthesizing machines--and the
transfer RNA molecules used to add each
new amino acid to growing proteins. In
addition, countless small RNA molecules
are involved in regulating, processing
and disposing of the constant traffic
of messenger RNA. The enzyme RNA
polymerase carries the weighty
responsibility of creating all of these
different RNA molecules. The RNA
Factory RNA polymerase is a huge
factory with many moving parts. The one
shown here, from PDB entry 1i6h, is
from yeast cells. It is composed of a
dozen different proteins. Together,
they form a machine that surrounds DNA
strands, unwinds them, and builds an
RNA strand based on the information
held inside the DNA. Once the enzyme
gets started, RNA polymerase marches
confidently along the DNA copying RNA
strands thousands of nucleotides
long. Accuracy As you might expect,
RNA polymerase needs to be accurate in
its copying of genetic information. To
improve its accuracy, it performs a
simple proofreading step as it builds
an RNA strand. The active site is
designed to be able to remove
nucleotides as well as add them to the
growing strand. The enzyme tends to
hover around mismatched nucleotides
longer than properly added ones, giving
the enzyme time to remove them. This
process is somewhat wasteful, since
proper nucleotides are also
occasionally removed, but this is a
small price to pay for creating better
RNA transcripts. Overall, RNA
polymerase makes an error about once in
10,000 nucleotides added, or about once
per RNA strand created. Poisoning
Polymerase Since RNA polymerase is
absolutely essential for the life of
the cell, it is a sensitive target for
poisons and toxins. The most powerful
of these poisons is alpha-amanitin, a
small circular peptide created by the
death cap mushroom. Eating even one of
these mushrooms will lead to coma and
death in a manner of days, as the
poison attacks RNA polymerase
throughout the body. Surprisingly, it
binds on the back side of RNA
polymerase, away from the active site
and away from the binding site for the
DNA and RNA. It does not physically
block the active site, like most
inhibitors, but instead jams the
mechanism of the enzyme. RNA polymerase
is a highly mobile enzyme, that flexes
and changes shape as it performs the
sequential steps of binding to DNA,
unwinding it, and then building the RNA
strand. As seen in PDB entry 1k83, the
poison binds between two subunits of
the protein, gluing them together and
blocking these essential motions. PD
source: http://www.pdb.org/pdb/education
_discussion/molecule_of_the_month/images
/1i6h-composite.gif


[2] [t Notice that many RNA molecules
are being produced all in sequence,
with each RNA molecule getting longer
as each protein reaches the end of the
DNA molecule.] Micrograph of gene
transcription of ribosomal RNA
illustrating the growing primary
transcripts. ''Begin'' indicates the 5'
end of the coding strand of DNA, where
new RNA synthesis begins; ''end''
indicates the 3' end, where the primary
transcripts are almost
complete. This is an alternate
version of
Image:RibosomaleTranskriptionsEinheit.jp
g, original author identified as Dr.
Hans-Heinrich Trepte, labeled in
German. This version with English
labels is from en:Image:Transcription
label fromcommons.jpg, by
en:UserOpabinia regalis, licensed under
GFDL. GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/4/43/Transcription_label_e
n.jpg

4,370,000,000 YBN
168) The ribosome evolves. The first
Ribosomal RNA (rRNA).

The ribosome may function as a
protocell, providing a platform for
more efficient protein production. A
single RNA may contain all the
instructions needed to make more
polymerase, tRNA, and ribosomes.
Alternatively the first ribosome may
not evolve until after the first cell.

All cells contain ribosomes.4
Ribosomes are the cellular organelles
that carry out protein synthesis,
through a process called translation.
These molecular machines are
responsible for accurately translating
the linear genetic code on the
messenger RNA (mRNA), into a linear
sequence of amino acids to produce a
protein.5

FOOTNOTES
1. ^ "ribosome." Genetics. The Gale
Group, Inc, 2003. Answers.com 28 Nov.
2011.
http://www.answers.com/topic/ribosome
2. ^ Campbell, Reece, et al, "Biology",
2008, p98.
3. ^ "ribosome." Genetics. The
Gale Group, Inc, 2003. Answers.com 28
Nov. 2011.
http://www.answers.com/topic/ribosome
4. ^ Campbell, Reece, et al, "Biology",
2008, p98.
5. ^ "ribosome." Genetics. The
Gale Group, Inc, 2003. Answers.com 28
Nov. 2011.
http://www.answers.com/topic/ribosome
 
[1] Description English:
Illustration of tRNA building peptide
chain Date 1 March 2009 Source
Own work Author
Boumphreyfr CC
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0f/Peptide_syn.png


[2] Source : ''Role of the
Ribosome'' University of Texas Medical
Branch UNKNOWN
source: http://ead.univ-angers.fr/~jaspa
rd/Page2/COURS/7RelStructFonction/2Bioch
imie/1SyntheseProteines/3Figures/4Organi
tes/2Ribosomes/6Polysome.gif

4,365,000,000 YBN
166) The first Deoxyribonucleic acid
(DNA) molecule. A protein evolves that
allows the assembly of DNA from RNA; a
ribonucleotide reductase.5

This protein changes ribonucleotides
into deoxyribonucleotides, which can
then be assembled into the first DNA
molecules on Earth.6

DNA has the advantage of being more
stable than RNA and can hold together
in longer strands.7 Longer strands
allow for a more complex organism.8

FOO
TNOTES
1. ^ Elledge SJ, Zhou Z, Allen JB
(March 1992). "Ribonucleotide
reductase: regulation, regulation,
regulation". Trends Biochem. Sci. 17
(3): 119–23.
DOI:10.1016/0968-0004(92)90249-9. PMID
1412696.
2. ^ Elledge SJ, Zhou Z, Allen JB
(March 1992). "Ribonucleotide
reductase: regulation, regulation,
regulation". Trends Biochem. Sci. 17
(3): 119–23.
DOI:10.1016/0968-0004(92)90249-9. PMID
1412696.
3. ^ Elledge SJ, Zhou Z, Allen JB
(March 1992). "Ribonucleotide
reductase: regulation, regulation,
regulation". Trends Biochem. Sci. 17
(3): 119–23.
DOI:10.1016/0968-0004(92)90249-9. PMID
1412696.
4. ^ Ted Huntington.
5. ^ Elledge SJ, Zhou Z, Allen
JB (March 1992). "Ribonucleotide
reductase: regulation, regulation,
regulation". Trends Biochem. Sci. 17
(3): 119–23.
DOI:10.1016/0968-0004(92)90249-9. PMID
1412696.
6. ^ Ted Huntington.
7. ^ Lurquin, P.F. The Origins
of Life and the Universe. COLUMBIA
University Press, 2003, p.
132. http://books.google.com/books?id=2
-qdwqOd1BsC&pg=PA132

8. ^ Ted Huntington.
 
[1] Description Crystallographic
structure of the ribonucleotide
reductase protein R1E from Salmonella
typhimurium. The protein is rainbow
colored (N-terminus = blue, C-terminus
= red) while deoxyadenosine
triphosphate is show as sticks and a
complexed magnesium ion as a grey
sphere.[1] ↑ PDB 1PEU; Uppsten M,
Färnegårdh M, Jordan A, Eliasson R,
Eklund H, Uhlin U (June 2003).
''Structure of the large subunit of
class Ib ribonucleotide reductase from
Salmonella typhimurium and its
complexes with allosteric effectors''.
J. Mol. Biol. 330 (1): 87–97. PMID
12818204. Date 28 February
2008 Source Own
work Author Boghog2 PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/e/e3/1PEU_R1E.png/10
24px-1PEU_R1E.png


[2] Description English: The
reaction mechanism of ribonucleotide
reductase Date 14 January 2006
(original upload
date) Source Transferred from
en.wikipedia; transferred to Commons by
User:Michał Sobkowski using
CommonsHelper. Author Original
uploader was BorisTM at
en.wikipedia PD
source: http://upload.wikimedia.org/wiki
pedia/commons/2/2c/RNR_reaction.png

4,360,000,000 YBN
212) A protein can copy DNA molecules,
a DNA polymerase {PoL-u-mu-rAS6 }.7

FOO
TNOTES
1. ^ "DNA polymerase." Genetics. The
Gale Group, Inc, 2003. Answers.com 04
Aug. 2012.
http://www.answers.com/topic/dna-polymer
ase

2. ^ "Polymerase." Dictionary.com
Unabridged. Random House, Inc. 26 Jan.
2013.
http://dictionary.reference.com/browse/P
olymerase>.
3. ^ "DNA polymerase." Genetics. The
Gale Group, Inc, 2003. Answers.com 04
Aug. 2012.
http://www.answers.com/topic/dna-polymer
ase

4. ^ "Polymerase." Dictionary.com
Unabridged. Random House, Inc. 26 Jan.
2013.
http://dictionary.reference.com/browse/P
olymerase>.
5. ^ "DNA polymerase." Genetics. The
Gale Group, Inc, 2003. Answers.com 04
Aug. 2012.
http://www.answers.com/topic/dna-polymer
ase

6. ^ "Polymerase." Dictionary.com
Unabridged. Random House, Inc. 26 Jan.
2013.
http://dictionary.reference.com/browse/P
olymerase>.
7. ^ "DNA polymerase." Genetics. The
Gale Group, Inc, 2003. Answers.com 04
Aug. 2012.
http://www.answers.com/topic/dna-polymer
ase

 
[1] A look at DNA replication, with the
inset showing a larger and general
view. ''Pol'' stands for polymerase, a
key enzyme. Note how each enzyme works
in a 'biochemical team' to complete the
process efficiently COPYRIGHTED
source: http://genmed.yolasite.com/resou
rces/DNA20replication.jpg


[2] Description Diagram of DNA
polymerase extending a DNA strand and
proof-reading. Date Source Own
work Author Madprime GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/6/6f/DNA_polymerase.svg

4,360,000,000 YBN
6409) Transcription evolves. A protein
(an RNA polymerase) assembles RNA from
DNA.

 
[1] Transcription: DNA-> RNA In E. coli
it is possible to see the strands of
RNA transcripts under the electron
microscope. Relate the image seen under
an electron microscope with the drawing
in your book in Figure 13-3. Why do you
not see any protein strands coming from
the mRNA in the electron microscope
image? UNKNOWN
source: http://www.utexas.edu/courses/zo
o325/13-4.gif


[2] RNA is a versatile molecule. In
its most familiar role, RNA acts as an
intermediary, carrying genetic
information from the DNA to the
machinery of protein synthesis. RNA
also plays more active roles,
performing many of the catalytic and
recognition functions normally reserved
for proteins. In fact, most of the RNA
in cells is found in ribosomes--our
protein-synthesizing machines--and the
transfer RNA molecules used to add each
new amino acid to growing proteins. In
addition, countless small RNA molecules
are involved in regulating, processing
and disposing of the constant traffic
of messenger RNA. The enzyme RNA
polymerase carries the weighty
responsibility of creating all of these
different RNA molecules. The RNA
Factory RNA polymerase is a huge
factory with many moving parts. The one
shown here, from PDB entry 1i6h, is
from yeast cells. It is composed of a
dozen different proteins. Together,
they form a machine that surrounds DNA
strands, unwinds them, and builds an
RNA strand based on the information
held inside the DNA. Once the enzyme
gets started, RNA polymerase marches
confidently along the DNA copying RNA
strands thousands of nucleotides
long. Accuracy As you might expect,
RNA polymerase needs to be accurate in
its copying of genetic information. To
improve its accuracy, it performs a
simple proofreading step as it builds
an RNA strand. The active site is
designed to be able to remove
nucleotides as well as add them to the
growing strand. The enzyme tends to
hover around mismatched nucleotides
longer than properly added ones, giving
the enzyme time to remove them. This
process is somewhat wasteful, since
proper nucleotides are also
occasionally removed, but this is a
small price to pay for creating better
RNA transcripts. Overall, RNA
polymerase makes an error about once in
10,000 nucleotides added, or about once
per RNA strand created. Poisoning
Polymerase Since RNA polymerase is
absolutely essential for the life of
the cell, it is a sensitive target for
poisons and toxins. The most powerful
of these poisons is alpha-amanitin, a
small circular peptide created by the
death cap mushroom. Eating even one of
these mushrooms will lead to coma and
death in a manner of days, as the
poison attacks RNA polymerase
throughout the body. Surprisingly, it
binds on the back side of RNA
polymerase, away from the active site
and away from the binding site for the
DNA and RNA. It does not physically
block the active site, like most
inhibitors, but instead jams the
mechanism of the enzyme. RNA polymerase
is a highly mobile enzyme, that flexes
and changes shape as it performs the
sequential steps of binding to DNA,
unwinding it, and then building the RNA
strand. As seen in PDB entry 1k83, the
poison binds between two subunits of
the protein, gluing them together and
blocking these essential motions. PD
source: http://www.pdb.org/pdb/education
_discussion/molecule_of_the_month/images
/1i6h-composite.gif

4,355,000,000 YBN
20) The first cell on Earth evolves.
This is the first prokaryotic cell and
first bacterium. DNA is surrounded by a
membrane of proteins made by ribosomes;
the first cytoplasm.15

This cell may form in either fresh or
salt water, near the sunlit water
surface or near underwater volcanoes on
the ocean floor.16

The DNA of this cell is a template
containing the code for a copying
molecule (DNA polymerase
{PoL-u-mu-rAS17 }), and the necessary
mRNA, tRNA, and rRNA molecules needed
to build the cytoplasm. For the first
time, ribosomes and DNA build cell
structure. DNA protected by cytoplasm
is more likely to survive and be
copied.18

This is the start of binary cell
division. DNA polymerase duplicates DNA
within the cell and then the cell
divides into two parts.19 A system of
division may evolve in which the
original and the newly synthesized copy
of DNA are each attached to the
cytoplasm, so that as the cell grows,
the two copies of DNA can be separated,
and the growing mass can eventually
divide into two cells.20

This is also the start of passive
transport. Amino acids, nucleotides,
water, and other molecules enter and
exit the cytoplasm only because of a
difference in concentration from inside
and outside the cell. This represents
the beginnings of the first digestive
system.

This cell structure forms the basis of
all future cells of every living object
on Earth. These first cells are
probably anaerobic (or anoxygenic- do
not require free oxygen) and are
heterotrophic, meaning that they do not
make their own food (amino acids,
nucleotides, phosphates, and sugars)
but instead depend on obtaining these
molecules from external sources.21

FOOT
NOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Prothero,
"Evolution: What the Fossils Say and
Why It Matters", 2007, p145-154.
4. ^ Ted
Huntington.
5. ^ Prothero, "Evolution: What the
Fossils Say and Why It Matters", 2007,
p145-154.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted Huntington.
9. ^ Ted
Huntington.
10. ^ Prothero, "Evolution: What the
Fossils Say and Why It Matters", 2007,
p145-154.
11. ^ "Polymerase." Dictionary.com
Unabridged. Random House, Inc. 26 Jan.
2013.
http://dictionary.reference.com/browse/P
olymerase>.
12. ^ Ted Huntington.
13. ^ Ted Huntington.
14. ^ Ted
Huntington.
15. ^ Ted Huntington.
16. ^ Prothero, "Evolution:
What the Fossils Say and Why It
Matters", 2007, p145-154.
17. ^ "Polymerase."
Dictionary.com Unabridged. Random
House, Inc. 26 Jan. 2013.
http://dictionary.reference.com/browse/P
olymerase>.
18. ^ Ted Huntington.
19. ^ Ted Huntington.
20. ^ Ted
Huntington.
21. ^ Ted Huntington.
 
[1] Deutsch: Bild über den Reitenden
Urzwerg English: Image of Nanoarchaeum
equitans Date 2005-09-10 (original
upload date) Source Originally
from de.wikipedia; description page
is/was here. Author Original
uploader was Eber-Jimmy at
de.wikipedia Permission (Reusing
this file) This image is in the
public domain due to its
age. Licensing According to this
article, ''Es wurde von dem
Mikrobiologen Karl O. Stetter entdeckt.
Bildrechte: Public domain.'' PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/dc/Urzwerg.jpg


[2] Hydrogenobacter thermophilus
(strain TK-6) is an obligately
chemolithoautotrophic, extremely (and
strictly) thermophilic
hydrogen-oxidizing bacterium whose
optimal growth temperature is around 70
to 75°C and was isolated from hot
springs. UNKNOWN
source: http://standardsingenomics.org/i
ndex.php/sigen/article/viewFile/146/534/
4368

4,350,000,000 YBN
11
183) Cells make the first lipids on
Earth; (fats, oils, and waxes8 )9 by
making proteins that can assemble
lipids.10

FOOTNOTES
1. ^ find biomarker evidence
2. ^ "lipid." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 28 Dec. 2011.
http://www.answers.com/topic/lipid
3. ^ Ted Huntington.
4. ^ "lipid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/lipid
5. ^ Ted Huntington.
6. ^ "lipid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/lipid
7. ^ Ted Huntington.
8. ^ "lipid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/lipid
9. ^ Ted Huntington.
10. ^ Ted Huntington.
11. ^ Ted
Huntington.
 
[1] Figure1: Lipid accumulation in
differentiating 3T3-L1 pre-adipocyte
cell line (days in culture) UNKNOWN
source: http://www.emsdiasum.com/microsc
opy/products/sem/wet/images/lipid_accumu
lation.jpg


[2] Lipid Structures under the
microscope. Image by Alison North, The
Rockefeller University. UNKNOWN
source: http://selections.rockefeller.ed
u/cms/images/stories/2010/may/lipid.gif

4,345,000,000 YBN
27) A phospholipid bilayer evolves
around the cell, providing added
protection from the external
environment.4 All extant cells have
this phospholipid bilayer.5

When phospholipids are added to water,
they self-assemble into double-layered
aggregates, or bilayers, with the
phosphate part of the molecule on the
outside and the fatty acid tail part on
the inside.6 7

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Campbell, N.A.,
and J.B. Reece. Biology. Pearson
Benjamin Cummings, 2008. Alternative
eText Formats Series, p76-77.
4. ^ Ted
Huntington.
5. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p76-77.
6. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p76-77.
7. ^ Sadava, D. et al. Life: The
Science of Biology. W. H. Freeman,
2009,
p107. http://books.google.com/books?id=
ANT8VB14oBUC&pg=PA107

 
[1] Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p77. COPYRIGHTED
source: Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p77.


[2] Gram negative cell
wall http://www.arches.uga.edu/~kristen
c/cellwall.html COPYRIGHTED
source: http://www.arches.uga.edu/~krist
enc/cellwall.html

4,340,000,000 YBN
26) Possibly DNA that is connected in a
circle allows the DNA polymerase to
make continuous copies of the cell,
which may increase the speed of cell
growth, duplication, and division.1

As far as is known bacteria do not die
of old age, but if a mutation stops
them from dividing, then they die.
Bacteria can also die from physical
destruction in addition to lack of food
and water.2

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Hardy, S. Human
Microbiology. Taylor & Francis, 2002.
Lifelines Series.
 
[1] PLATE IV. Autoradiographs showing
examples of the replicated portion of
both symmetrically aud asymmetrically
reinitiated chromosomes. Spores of B.
subtilis 168 thy-trp- were
germinated in t,he absence of thymine
and allowed to incorporate
[methyZ-3H]thymine as follows: (a) and
(b), 160 to 190 min; (d), (e) and (f),
160 to 200 min; (c) and (g), 150 to 200
min. Autoradiographs were prepared in
the usual manner. The scale shows 100
pm. See Materials and Methods for
other details. Wake, R.G.
“Visualization of Reinitiated
Chromosomes in Bacillus Subtilis.”
Journal of Molecular Biology 68.3
(1972):
501–509. http://www.sciencedirect.com
/science/article/pii/0022283672901027 C
OPYRIGHTED
source: http://www.sciencedirect.com/sci
ence/article/pii/0022283672901027


[2] Electron Micrograph of RecA
protein-coated DNA trefoil knot
generated by E.coli DNA topoisomerase 1
acting on nicked circular DNA.
Micrograph courtesy of A. Stasiak,
University of Lausanne. UNKNOWN
source: http://www.cabinetmagazine.org/i
ssues/20/assets/images/wertheim1.jpg

4,340,000,000 YBN
64) Operons evolve. An operon is a
sequence of DNA which a protein binds
with in order to block RNA polymerase
from building an mRNA molecule, from
part of the sequence, which would be
translated into a protein. Operons
allow a bacterium to produce certain
proteins only when necessary. Bacteria
before now can only build a constant
stream of all proteins encoded in their
DNA.7 8 9

FOOTNOTES
1. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

2. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

3. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

4. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

5. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

6. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

7. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

8. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

9. ^ "operon." McGraw-Hill Encyclopedia
of Science and Technology. The
McGraw-Hill Companies, Inc., 2005.
Answers.com 02 Jun. 2013.
http://www.answers.com/topic/operon
 
[1] Figure 6 from: Jacob, F. & Monod,
J. Genetic regulatory mechanisms in the
synthesis of proteins. J. Mol. Biol. 3,
318–356 (1961)
http://www.sciencedirect.com/science?_
ob=ArticleURL&_udi=B6WK7-4Y39HH7-B&_user
=4422&_coverDate=06%2F30%2F1961&_alid=17
23143833&_rdoc=1&_fmt=high&_orig=search&
_origin=search&_zone=rslt_list_item&_cdi
=6899&_sort=r&_st=13&_docanchor=&view=c&
_ct=5&_acct=C000059600&_version=1&_urlVe
rsion=0&_userid=4422&md5=c2699b72c7c5bee
4e2c31224c6261556&searchtype=a {Jacob_F
rancois_19601228.pdf} COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=ArticleURL&_udi=B6WK7-4Y39HH7-B
&_user=4422&_coverDate=06%2F30%2F1961&_a
lid=1723143833&_rdoc=1&_fmt=high&_orig=s
earch&_origin=search&_zone=rslt_list_ite
m&_cdi=6899&_sort=r&_st=13&_docanchor=&v
iew=c&_ct=5&_acct=C000059600&_version=1&
_urlVersion=0&_userid=4422&md5=c2699b72c
7c5bee4e2c31224c6261556&searchtype=a


[2] Figure 3 from: Jacob, F. & Monod,
J. Genetic regulatory mechanisms in the
synthesis of proteins. J. Mol. Biol. 3,
318–356 (1961)
http://www.sciencedirect.com/science?_
ob=ArticleURL&_udi=B6WK7-4Y39HH7-B&_user
=4422&_coverDate=06%2F30%2F1961&_alid=17
23143833&_rdoc=1&_fmt=high&_orig=search&
_origin=search&_zone=rslt_list_item&_cdi
=6899&_sort=r&_st=13&_docanchor=&view=c&
_ct=5&_acct=C000059600&_version=1&_urlVe
rsion=0&_userid=4422&md5=c2699b72c7c5bee
4e2c31224c6261556&searchtype=a {Jacob_F
rancois_19601228.pdf} COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=ArticleURL&_udi=B6WK7-4Y39HH7-B
&_user=4422&_coverDate=06%2F30%2F1961&_a
lid=1723143833&_rdoc=1&_fmt=high&_orig=s
earch&_origin=search&_zone=rslt_list_ite
m&_cdi=6899&_sort=r&_st=13&_docanchor=&v
iew=c&_ct=5&_acct=C000059600&_version=1&
_urlVersion=0&_userid=4422&md5=c2699b72c
7c5bee4e2c31224c6261556&searchtype=a

4,340,000,000 YBN
6340) Facilitated diffusion evolves.
Proteins in the cell membrane allow
only certain molecules to enter the
cell.3

"Facilitated diffusion" is passive
transport aided by proteins.4

FOOTNOTES

1. ^ Daniel V. Lim, "Microbiology",
2002,
p101. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA101

2. ^ Daniel V. Lim, "Microbiology",
2002,
p101. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA101

3. ^ Daniel V. Lim, "Microbiology",
2002,
p101. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA101

4. ^ Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P134-135.
 
[1] Figure 7.15 from: Campbell, Reece,
et al., ''Biology'', 8th Edition, 2008,
P135. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P135.


[2] Figure 7.18 from: Campbell,
Reece, et al., ''Biology'', 8th
Edition, 2008, P137. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P137.

4,335,000,000 YBN
28) Cellular respiration. Glycolysis
evolves in the cytoplasm. Cells can now
make ATP (adenosine {oDeNoSEN8 }
triphosphate) by converting glucose
into pyruvate {PIrUVAT9 }. This is the
beginning of cellular respiration, how
cells convert food into ATP and waste
products.10

ATP is the molecule that drives most
cellular work.11

That glycolysis is the most widespread
metabolic pathway, that it occurs in
the cytoplasm, not in an organelle, and
that it is the first stage in
fermentation all imply an ancient
origin.12

FOOTNOTES
1. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162.
2. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162.
3. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008, p162.
4. ^
"adenosine." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 29 Dec.
2012.
http://www.answers.com/topic/adenosine
5. ^ "pyruvate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 29
Dec. 2012.
http://www.answers.com/topic/pyruvate
6. ^ Campbell, Reece, et al, "Biology",
8th edition, 2008, p162.
7. ^ Campbell,
Reece, et al, "Biology", 8th edition,
2008, p162.
8. ^ "adenosine." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 29
Dec. 2012.
http://www.answers.com/topic/adenosine
9. ^ "pyruvate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 29
Dec. 2012.
http://www.answers.com/topic/pyruvate
10. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162.
11. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162.
12. ^ Campbell, Reece,
et al, "Biology", 8th edition, 2008,
p179.
 
[1] Description English: Glycolysis
pathway overview. Date 3
September 2009 Source Own
work Author
WYassineMrabetTalk✉ Inkscape
Logo.svg This vector image was
created with
Inkscape. Permission (Reusing this
file) GFDL license (see below). GFDL
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/a/a0/Glycolysis.svg/
1024px-Glycolysis.svg.png


[2] Figure 9.6 from: Campbell, Reece,
et al, ''Biology'', 8th edition, 2008,
p166. COPYRIGHTED
source: Campbell, Reece, et al,
"Biology", 8th edition, 2008, p166.

4,330,000,000 YBN
44) Fermentation evolves in the cell
cytoplasm. Cells can make lactic acid.4


These cells, which are anaerobic, can
now convert pyruvate, the final product
of glycolysis, into lactate (an ionized
form of lactic acid), and in the
process refuel glycolysis and the
production of ATP molecules.5 6

FOOTNOT
ES
1. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

2. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

3. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

4. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

5. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008, p162-184.
6. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

 
[1] Campbell, Reece, et al,
''Biology'', 8th edition, 2008,
p178. COPYRIGHTED
source: Campbell, Reece, et al,
"Biology", 8th edition, 2008, p178.


[2] IUPAC
name[hide] 2-Hydroxypropanoic
acid Other names[hide] Milk
acid Description de: Struktur
von Milchsäure; en: Structure of
lactic acid Date 12 February
2007 Source Own work Author
NEUROtiker Permission (Reusing
this file) Own work, all rights
released (Public domain) PD
source: http://upload.wikimedia.org/wiki
pedia/commons/5/59/Lactic-acid-3D-balls.
pnghttp://upload.wikimedia.org/wikipedia
/commons/thumb/d/d3/Lactic-acid-skeletal
.svg/1000px-Lactic-acid-skeletal.svg.png

4,325,000,000 YBN
213) A second kind of fermentation
evolves in the cytoplasm. Cells (all
anaerobic) can now convert pyruvate
(the final product of glycolysis) into
ethanol.4

FOOTNOTES
1. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162-184.
2. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162-184.
3. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008,
p162-184.
4. ^ Campbell, Reece, et al, "Biology",
8th edition, 2008, p162-184.
 
[1] Campbell, Reece, et al,
''Biology'', 8th edition, 2008,
p178. COPYRIGHTED
source: Campbell, Reece, et al,
"Biology", 8th edition, 2008, p178.


[2] Ethanol Full structural
formula, Ball and Stick Model, and
Space-Filling Model of Ethanol PD
source: http://upload.wikimedia.org/wiki
pedia/commons/3/37/Ethanol-2D-flat.pnght
tp://upload.wikimedia.org/wikipedia/comm
ons/b/b0/Ethanol-3D-balls.pnghttp://uplo
ad.wikimedia.org/wikipedia/commons/0/00/
Ethanol-3D-vdW.png

4,315,000,000 YBN
196) Active transport evolves. Proteins
and ATP are used to transport molecules
into and out of the cytoplasm.7 8 9

Active transport enables a cell to
maintain internal concentrations of
small molecules that differ from the
cell's surroundings.10

FOOTNOTES
1. ^
http://www.cat.cc.md.us/~gkaiser/biotuto
rials/eustruct/cmeu.html

2. ^ "active transport." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 10
Jul. 2011.
http://www.answers.com/topic/active-tran
sport

3. ^ "active transport." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 10 Jul. 2011.
http://www.answers.com/topic/active-tran
sport

4. ^
http://www.cat.cc.md.us/~gkaiser/biotuto
rials/eustruct/cmeu.html

5. ^ "active transport." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 10
Jul. 2011.
http://www.answers.com/topic/active-tran
sport

6. ^ "active transport." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 10 Jul. 2011.
http://www.answers.com/topic/active-tran
sport

7. ^
http://www.cat.cc.md.us/~gkaiser/biotuto
rials/eustruct/cmeu.html

8. ^ "active transport." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 10
Jul. 2011.
http://www.answers.com/topic/active-tran
sport

9. ^ "active transport." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 10 Jul. 2011.
http://www.answers.com/topic/active-tran
sport

10. ^ Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P135.
 
[1] Figure 7.18 from: Campbell, Reece,
et al., ''Biology'', 8th Edition, 2008,
P137. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P137.


[2] Figure 7.15 from: Campbell,
Reece, et al., ''Biology'', 8th
Edition, 2008, P135. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P135.

4,200,000,000 YBN
5 6
292) The prokaryote flagellum evolves.4


Prokaryotic cells now have more
mobility, and can make more choices
about their location.

FOOTNOTES
1. ^ conjugation in protists, flagella
in eukaryotes: Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
2. ^
conjugation in protists, flagella in
eukaryotes: Michael Sleigh, "Protozoa
and Other Protists", (London; New York:
Edward Arnold, 1989).
3. ^ conjugation in
protists, flagella in eukaryotes:
Michael Sleigh, "Protozoa and Other
Protists", (London; New York: Edward
Arnold, 1989).
4. ^ conjugation in protists,
flagella in eukaryotes: Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
5. ^ S. Blair
Hedges and Sudhir Kumar, "The Timetree
of Life", 2009,
p107-110. http://www.timetree.org/book.
php

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). {2800000000 YBN}

MORE INFO
[1] Pallen MJ, Matzke NJ (October
2006). "From The Origin of Species to
the origin of bacterial flagella".
Nature Reviews. Microbiology 4 (10):
784–90. doi:10.1038/nrmicro1493. PMID
16953248. http://www.nature.com/nrmicro
/journal/v4/n10/full/nrmicro1493.html

[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3] Tree of life,
http://tolweb.org/tree/
[4] David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
[5] JOSHUA LEDERBERG, E. L.
TATUM, "Gene Recombination in
Escherichia Coli", Nature 158, 558-558
(19 October 1946) doi:10.1038/158558a0
Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html

[6] "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>
 
[1] Aquifex pyrophilus (platinum
shadowed). © K.O. Stetter & Reinhard
Rachel, University of Regensburg.
COPYRIGHTED
source: http://biology.kenyon.edu/Microb
ial_Biorealm/bacteria/aquifex/aquifex.ht
m


[2] Description English: A
Gram-negative bacterial flagellum. A
flagellum (plural: flagella) is a long,
slender projection from the cell body,
whose function is to propel a
unicellular or small multicellular
organism. The depicted type of
flagellum is found in bacteria such as
E. coli and Salmonella, and rotates
like a propeller when the bacterium
swims. The bacterial movement can be
divided in 2 kinds: run, resulting from
a counterclockwise rotation of the
flagellum, and tumbling, from a
clockwise rotation of the
flagellum. Français : Flagelle de
bactérie Gram-négative. Le flagelle
est une projection longue et fine hors
du corps cellulaire, dont la fonction
est de propulser l'organisme. Ce type
de flagelle est présent dans des
bactéries comme Escherichia coli et
Salmonella, et tourne comme une hélice
quand la bactérie se déplace. Le
flagelle peut provoquer deux types de
déplacement selon son sens de
rotation. Date November 2007 Source
self-made References: [1],[2], [3]
(main 3), [4], [5] (propeller
rotation), PMID 17142059
(bend). Author LadyofHats PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/1/15/Flagellum_base_
diagram_en.svg/1000px-Flagellum_base_dia
gram_en.svg.png

4,193,000,000 YBN
24 25 26 27 28 29 30 31 32
77) The Archaea (also called
archaebacteria) evolve according to
genetic comparison.13 The Phylum
Nanoarcheota.14 15

Eubacteria and Archaea are the two
major lines of Prokaryotes.16 17 18 19
20 21 22

Archaea have a variety of shapes,
including spherical, rodlike, and
spiral forms.23

FOOTNOTES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

2. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

3. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

4. ^ Hedges and Kumar, "TimeTree of
Life", 2009,
p102. http://timetree.org/pdf/Battistuz
zi2009Chap06.pdf

5. ^ Huber, H., Hohn, M.J., Rachel, R.,
Fuchs, T., Wimmer, V.C., and Stetter,
K.O. "A new phylum of Archaea
represented by a nanosized
hyperthermophilic symbiont." Nature
(2002)
417:63-67. http://www.nature.com/nature
/journal/v417/n6884/full/417063a.html

6. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

7. ^ Russell F. Doolittle, Da-Fei Feng,
Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996). 2142-1873my
8. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004). 2300my
9. ^
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). 4100my (has arche b4
eu)
10. ^ Osawa, S., Honjo, "Archaebacteria
vs Metabacteria : Phylogenetic tree of
organisms indicated by comparison of 5S
ribosomal RNA sequences.", (Tokyo:
Springer, Tokyo/ Berlin eds.:"Evolution
of Life", pp. 325-336,, 1991). 1800my
11. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html
{4000my}
12. ^ S. Blair
Hedges and Sudhir Kumar, "Genomic
clocks and evolutionary timescales",
Trends in Genetics Volume 19, Issue 4 ,
April 2003, Pages 200-206, (2003).
3970my
13. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

14. ^ Hedges and Kumar, "TimeTree of
Life", 2009,
p102. http://timetree.org/pdf/Battistuz
zi2009Chap06.pdf

15. ^ Huber, H., Hohn, M.J., Rachel,
R., Fuchs, T., Wimmer, V.C., and
Stetter, K.O. "A new phylum of Archaea
represented by a nanosized
hyperthermophilic symbiont." Nature
(2002)
417:63-67. http://www.nature.com/nature
/journal/v417/n6884/full/417063a.html

16. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

17. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996). 2142-1873my
18. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004). 2300my
19. ^
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). 4100my (has arche b4
eu)
20. ^ Osawa, S., Honjo, "Archaebacteria
vs Metabacteria : Phylogenetic tree of
organisms indicated by comparison of 5S
ribosomal RNA sequences.", (Tokyo:
Springer, Tokyo/ Berlin eds.:"Evolution
of Life", pp. 325-336,, 1991). 1800my
21. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html
{4000my}
22. ^ S. Blair
Hedges and Sudhir Kumar, "Genomic
clocks and evolutionary timescales",
Trends in Genetics Volume 19, Issue 4 ,
April 2003, Pages 200-206, (2003).
3970my
23. ^ "archaebacterium." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 21 Aug. 2011.
http://www.answers.com/topic/archaebacte
ria

24. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p102-103. http://www.timetree.org/book.
php

25. ^ S. Blair Hedges and Sudhir Kumar,
"TimeTree of Life",
p102-103. http://www.timetree.org/pdf/H
edges2009Chap05.pdf

26. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

27. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996). 2142-1873my
(2142-1873my)
28. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). 2300my (2300my)
29. ^
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). 4100my (has arche b4
eu) (4100my)
30. ^ Osawa, S., Honjo,
"Archaebacteria vs Metabacteria :
Phylogenetic tree of organisms
indicated by comparison of 5S ribosomal
RNA sequences.", (Tokyo: Springer,
Tokyo/ Berlin eds.:"Evolution of Life",
pp. 325-336,, 1991). 1800my (1800my)
31. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849 (2002);
doi:10.1038/nrg929, (2002). 4000my
(4000my)
32. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003). 3970my (3970my)
 
[1] Deutsch: Bild über den Reitenden
Urzwerg English: Image of Nanoarchaeum
equitans Date 2005-09-10 (original
upload date) Source Originally
from de.wikipedia; description page
is/was here. Author Original
uploader was Eber-Jimmy at
de.wikipedia Permission (Reusing
this file) This image is in the
public domain due to its
age. Licensing According to this
article, ''Es wurde von dem
Mikrobiologen Karl O. Stetter entdeckt.
Bildrechte: Public domain.'' PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/dc/Urzwerg.jpg


[2] Figure 1) Changing views of the
tree and timescale of life. a) An
early-1990s view, with the tree
determined mostly from ribosomal RNA
(rRNA) sequence analysis. This tree
emphasizes vertical (as opposed to
horizontal) evolution and the close
relationship between eukaryotes and the
Archaebacteria. The deep branching
(>3.5 Giga (109) years ago, Gya) of
CYANOBACTERIA (Cy) and other Eubacteria
(purple), the shallow branching
(approx1 Gya) of plants (Pl), animals
(An) and fungi (Fu), and the early
origin of mitochondria (Mi), were based
on interpretations of the geochemical
and fossil record7, 8. Some deeply
branching amitochondriate (Am) species
were believed to have arisen before the
origin of mitochondria44. Major
symbiotic events (black dots) were
introduced to explain the origin of
eukaryotic organelles42, but were not
assumed to be associated with large
transfers of genes to the host nucleus.
They were: Eu, joining of an
archaebacterium host with a eubacterium
(presumably a SPIROCHAETE) to produce
an amitochondriate eukaryote; Mi,
joining of a eukaryote host with an
alpha-proteobacterium (Ap) symbiont,
leading to the origin of mitochondria,
and plastids (Ps), joining of a
eukaryote host with a cyanobacterium
symbiont, forming the origin of
plastids on the plant lineage and
possibly on other lineages. b) The
present view, based on extensive
genomic analysis. Eukaryotes are no
longer considered to be close relatives
of Archaebacteria, but are genomic
hybrids of Archaebacteria and
Eubacteria, owing to the transfer of
large numbers of genes from the
symbiont genome to the nucleus of the
host (indicated by coloured arrows).
Other new features, largely derived
from molecular-clock studies16, 39 (Box
1), include a relatively recent origin
of Cyanobacteria (approx2.6 Gya) and
mitochondria (approx1.8 Gya), an early
origin (approx1.5 Gya) of plants,
animals and fungi, and a close
relationship between animals and fungi.
Coloured dashed lines indicate
controversial aspects of the present
view: the existence of a
premitochondrial symbiotic event and of
living amitochondriate eukaryotes,
ancestors of which never had
mitochondria. c) The times of
divergence of selected model organisms
from humans, based on molecular clocks.
For the prokaryotes (red), because of
different possible origins through
symbiotic events, divergence times
depend on the gene of interest.
source: http://www.nature.com/nrg/journa
l/v3/n11/full/nrg929_fs.html

4,189,000,000 YBN
11 12
193) The Eubacteria "Hyperthermophiles"
evolve (the ancestor of Aquifex and
Thermotoga).7 8

Aquifex and Thermotoga are the only two
major genera {JeN-R-u9 } of eubacteria
that are hyperthermophiles. They grow
best in a environment that is around 80
degrees Celsius (176 degrees
Fahrenheit).10

FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Brocks, Buick, "A
reconstruction of Archean biological
diversity based on", Geochimica et
cosmochimica acta, (2003).
3. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
4. ^ Brocks, Buick, "A reconstruction
of Archean biological diversity based
on", Geochimica et cosmochimica acta,
(2003).
5. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
6. ^ Brocks, Buick, "A
reconstruction of Archean biological
diversity based on", Geochimica et
cosmochimica acta, (2003).
7. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
8. ^ Brocks, Buick, "A reconstruction
of Archean biological diversity based
on", Geochimica et cosmochimica acta,
(2003).
9. ^ "genera." Dictionary.com
Unabridged. Random House, Inc. 05 Aug.
2013.
http://dictionary.reference.com/browse/g
enera>.
10. ^ Munn, C.B. Marine Microbiology:
Ecology and Applications. Taylor &
Francis Group, 2004. Advanced Text,
p78. http://books.google.com/books?id=1
_S4cJYT3DUC&pg=PA78

11. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p107-110. http://www.timetree.org/book.
php

12. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
 
[1] A timescale of prokaryote
evolution. Letters indicate nodes
discussed in the text. The last common
ancestor was arbitrarily placed at 4.25
Ga in the tree, although this placement
was not part of the analyses. The grey
rectangle shows the time prior to the
initial rise in oxygen (presumably
anaerobic conditions). Mtb:
Methanothermobacter, Tab:
Thermoanaerobacter, Tsc:
Thermosynechococcus. Battistuzzi et
al. BMC Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 Table
1 Time estimates for selected nodes
in the tree of eubacteria (A-K) and
archaebacteria (L-P). Letters refer to
Fig. 3. Time (Ma)a CIb Node
A 102 57–176 Node
B 2508 2154–2928 Node
C 2800 2452–3223 Node
D 1039 702–1408 Node
E 2558 2310–2969 Node
F 2784 2490–3203 Node
G 2923 2587–3352 Node
H 3054 2697–3490 Node
I 3186 2801–3634 Node
J 3644 3172–4130 Node
K 3977 3434–4464 Node
L 233 118–386 Node
M 3085 2469–3514 Node
N 3566 2876–3948 Node
O 3781 3047–4163 Node
P 4112 3314–4486 a Averages of
the divergence times estimated using
the 2.3 Ga minimum constraint and the
five ingroup root constraints (nodes
A-K) and using the 1.198 ± 0.022 Ga
constraint and the five ingroup root
constraints (nodes L-P). b
Credibility interval (minimum and
maximum averages of the analyses under
the five ingroup root
constraints) Battistuzzi et al. BMC
Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 COPYRIGHTED

source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-44-3-l.jpg


[2] Aquifex pyrophilus (platinum
shadowed). © K.O. Stetter & Reinhard
Rachel, University of Regensburg.
source: http://biology.kenyon.edu/Microb
ial_Biorealm/bacteria/aquifex/aquifex.ht
m

4,187,000,000 YBN
12 13
180) The Archaea Phylum: Crenarchaeota
evolves (the ancestor of Sulfolobus).7
8

The Crenarchaea include many organisms
that are extremely thermophilic
{tR-mu-FiL-iK9 } (heat-loving) and
cryophilic {KrI-e-FiL-iK10 }
(cold-loving).11

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
6. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
9. ^ "thermophilic." Dictionary.com
Unabridged. Random House, Inc. 02 Jun.
2013.
http://dictionary.reference.com/browse/t
hermophilic>.
10. ^ "cryophilic." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
Jun. 2013.
http://www.answers.com/topic/cryophilic
11. ^ "Crenarchaeota". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Crenarchaeo
ta

12. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p102-103. http://www.timetree.org/book.
php

13. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
 
[1] A timescale of prokaryote
evolution. Letters indicate nodes
discussed in the text. The last common
ancestor was arbitrarily placed at 4.25
Ga in the tree, although this placement
was not part of the analyses. The grey
rectangle shows the time prior to the
initial rise in oxygen (presumably
anaerobic conditions). Mtb:
Methanothermobacter, Tab:
Thermoanaerobacter, Tsc:
Thermosynechococcus. Battistuzzi et
al. BMC Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 Table
1 Time estimates for selected nodes
in the tree of eubacteria (A-K) and
archaebacteria (L-P). Letters refer to
Fig. 3. Time (Ma)a CIb Node
A 102 57–176 Node
B 2508 2154–2928 Node
C 2800 2452–3223 Node
D 1039 702–1408 Node
E 2558 2310–2969 Node
F 2784 2490–3203 Node
G 2923 2587–3352 Node
H 3054 2697–3490 Node
I 3186 2801–3634 Node
J 3644 3172–4130 Node
K 3977 3434–4464 Node
L 233 118–386 Node
M 3085 2469–3514 Node
N 3566 2876–3948 Node
O 3781 3047–4163 Node
P 4112 3314–4486 a Averages of
the divergence times estimated using
the 2.3 Ga minimum constraint and the
five ingroup root constraints (nodes
A-K) and using the 1.198 ± 0.022 Ga
constraint and the five ingroup root
constraints (nodes L-P). b
Credibility interval (minimum and
maximum averages of the analyses under
the five ingroup root
constraints) Battistuzzi et al. BMC
Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 COPYRIGHTED

source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-44-3-l.jpg


[2] tree of archaea ?
source: http://www.uni-giessen.de/~gf126
5/GROUPS/KLUG/Stammbaum.html

4,187,000,000 YBN
24 25
181) The Archaea Phylum: Euryarchaeota
{YRE-oR-KE-O-Tu14 } evolves (the
ancestor of methanogens and
halobacteria {HaL-O-BaK-TER-E-u15 }).16
17

The earliest cell response to light.18


The Euryarchaeota {YRE-oR-KE-O-Tu19 }
are composed of two classes:
methanogens, which produce methane and
are often found in intestines and
sewage, and the halobacteria, which
survive in high concentrations of
salt.20

Some halobacteria use sensory rhodopsin
{rO-DoP-SiN21 } (a pigment sensitive to
red light22 ) for phototaxis (positive
or negative movement along a light
gradient or vector).23

FOOTNOTES
1. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

2. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

5. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

6. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

9. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

10. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
12. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

13. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

14. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

15. ^ "halobacteria." Dictionary.com
Unabridged. Random House, Inc. 02 Jun.
2013.
http://dictionary.reference.com/browse/h
alobacteria>.
16. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
17. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

18. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

19. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

20. ^ Margulis, L., and M.J. Chapman.
Kingdoms and Domains: An Illustrated
Guide to the Phyla of Life on Earth.
Elsevier Science, 2009,
p60-62. http://books.google.com/books?i
d=9IWaqAOGyt4C&pg=PA60

21. ^ "rhodopsin." Dictionary.com
Unabridged. Random House, Inc. 02 Jun.
2013.
http://dictionary.reference.com/browse/r
hodopsin>.
22. ^ "rhodopsin." The American
Heritage� Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
May. 2013.
http://www.answers.com/topic/rhodopsin-1

23. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

24. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p102-103. http://www.timetree.org/book.
php

25. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology,
(2004). http://www.biomedcentral.com/14
71-2148/4/44


MORE INFO
[1] S. Blair Hedges, "The origin
and evolution of model organisms",
Nature Reviews Genetics 3, 838-849
(November 2002),
doi:10.1038/nrg929 http://www.nature.co
m/nrg/journal/v3/n11/full/nrg929.html#to
p

 
[1] A timescale of prokaryote
evolution. Letters indicate nodes
discussed in the text. The last common
ancestor was arbitrarily placed at 4.25
Ga in the tree, although this placement
was not part of the analyses. The grey
rectangle shows the time prior to the
initial rise in oxygen (presumably
anaerobic conditions). Mtb:
Methanothermobacter, Tab:
Thermoanaerobacter, Tsc:
Thermosynechococcus. Battistuzzi et
al. BMC Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 Table
1 Time estimates for selected nodes
in the tree of eubacteria (A-K) and
archaebacteria (L-P). Letters refer to
Fig. 3. Time (Ma)a CIb Node
A 102 57–176 Node
B 2508 2154–2928 Node
C 2800 2452–3223 Node
D 1039 702–1408 Node
E 2558 2310–2969 Node
F 2784 2490–3203 Node
G 2923 2587–3352 Node
H 3054 2697–3490 Node
I 3186 2801–3634 Node
J 3644 3172–4130 Node
K 3977 3434–4464 Node
L 233 118–386 Node
M 3085 2469–3514 Node
N 3566 2876–3948 Node
O 3781 3047–4163 Node
P 4112 3314–4486 a Averages of
the divergence times estimated using
the 2.3 Ga minimum constraint and the
five ingroup root constraints (nodes
A-K) and using the 1.198 ± 0.022 Ga
constraint and the five ingroup root
constraints (nodes L-P). b
Credibility interval (minimum and
maximum averages of the analyses under
the five ingroup root
constraints) Battistuzzi et al. BMC
Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 COPYRIGHTED

source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-44-3-l.jpg


[2] tree of archaebacteria (archaea)
COPYRIGHTED
source: http://www.uni-giessen.de/~gf126
5/GROUPS/KLUG/Stammbaum.html

4,112,000,000 YBN
11
58) The first autotrophic cells; cells
that can produce some of their own
food.5

Autotrophs produce their own sugars,
lipids, and amino acids.6

There are only two kinds of autotrophs:
chemoautotrophs and photoautotrophs.7

Chemoautotrophs use chemical nutrients
to synthesize carbohydrates, while
photoautotrophs use light to synthesize
carbohydrates.8 9

This is a chemoautotrophic cell: genes
and metabolic sequences suggest that
chemoautotrophs evolve before
photoautotrophs.10

FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
4. ^ "autotroph." The Columbia
Electronic Encyclopedia, Sixth Edition.
Columbia University Press., 2012.
Answers.com 06 Jan. 2012.
http://www.answers.com/topic/autotroph
5. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
6. ^
"autotroph." The Columbia Electronic
Encyclopedia, Sixth Edition. Columbia
University Press., 2012. Answers.com 06
Jan. 2012.
http://www.answers.com/topic/autotroph
7. ^ "autotroph."Answers.com 30 Dec.
2012.
http://www.answers.com/topic/autotroph
8. ^ "autotroph." The Columbia
Electronic Encyclopedia, Sixth Edition.
Columbia University Press., 2012.
Answers.com 06 Jan. 2012.
http://www.answers.com/topic/autotroph
9. ^ "chemosynthesis." The Columbia
Electronic Encyclopedia, Sixth Edition.
Columbia University Press., 2012.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/chemosynthe
sis

10. ^ Levin, S.A. et al. The Princeton
Guide to Ecology. Princeton University
Press, 2009,
p361. http://books.google.com/books?id=
4MS-vfT89QMC&pg=PA361

11. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology,
(2004). http://www.biomedcentral.com/14
71-2148/4/44

 
[1] Description Methanopyrus
kandleri Date July
2006 Source ms:Imej:Arkea.jpg Auth
or ms:User:PM Poon GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/a/aa/Arkea.jpg

4,100,000,000 YBN
18
49) Photosynthesis evolves.12

Anaerobic bacteria use light particles
to convert carbon dioxide gas and an
electron donor13 (also called a
reductant) like Hydrogen sulfide into
glucose, water, and sulfur.14 This
process of moving carbon from carbon
dioxide gas to the hydrocarbon molecule
glucose is called carbon fixation.15

This is the ancestor of Photosystem
I.16

This system of photosynthesis does not
liberate oxygen.17

FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ "reductant."Answers.com
14 Jul. 2012.
http://www.answers.com/topic/reductant
3. ^ Frank H. Shu, "The Physical
Universe: An Introduction to
Astronomy", 1982,
p537. http://books.google.com/books?id=
v_6PbAfapSAC&pg=PA537

4. ^ "carbon fixation>.".
Dictionary.com Unabridged (v 1.1).
Random House, Inc. "carbon
fixation." The American Heritage®
Science Dictionary. Houghton Mifflin
Company. 14 Jul. 2012.
http://dictionary.reference.com/browse/c
arbon fixation>.
5. ^ Lockau, Wolfgang, Wolfgang
Nitschke (1993). "Photosystem I and its
Bacterial Counterparts". Physiologia
Plantarum 88 (2): 372–381.
DOI:10.1111/j.1399-3054.1993.tb05512.x.
http://dx.doi.org/10.1111%2Fj.1399-3054
.1993.tb05512.x

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^ "reductant."Answers.com
14 Jul. 2012.
http://www.answers.com/topic/reductant
8. ^ Frank H. Shu, "The Physical
Universe: An Introduction to
Astronomy", 1982,
p537. http://books.google.com/books?id=
v_6PbAfapSAC&pg=PA537

9. ^ "carbon fixation>.".
Dictionary.com Unabridged (v 1.1).
Random House, Inc. "carbon
fixation." The American Heritage®
Science Dictionary. Houghton Mifflin
Company. 14 Jul. 2012.
http://dictionary.reference.com/browse/c
arbon fixation>.
10. ^ Lockau, Wolfgang, Wolfgang
Nitschke (1993). "Photosystem I and its
Bacterial Counterparts". Physiologia
Plantarum 88 (2): 372–381.
DOI:10.1111/j.1399-3054.1993.tb05512.x.
http://dx.doi.org/10.1111%2Fj.1399-3054
.1993.tb05512.x

11. ^ Olson JM (May 2006).
"Photosynthesis in the Archean era".
Photosyn. Res. 88 (2): 109–17.
doi:10.1007/s11120-006-9040-5. PMID
16453059. http://www.springerlink.com/c
ontent/g6n805154602432w/?MUD=MP
{Olson_
2006.pdf}
12. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
13. ^ "reductant."Answers.com
14 Jul. 2012.
http://www.answers.com/topic/reductant
14. ^ Frank H. Shu, "The Physical
Universe: An Introduction to
Astronomy", 1982,
p537. http://books.google.com/books?id=
v_6PbAfapSAC&pg=PA537

15. ^ "carbon fixation>.".
Dictionary.com Unabridged (v 1.1).
Random House, Inc. "carbon
fixation." The American Heritage®
Science Dictionary. Houghton Mifflin
Company. 14 Jul. 2012.
http://dictionary.reference.com/browse/c
arbon fixation>.
16. ^ Lockau, Wolfgang, Wolfgang
Nitschke (1993). "Photosystem I and its
Bacterial Counterparts". Physiologia
Plantarum 88 (2): 372–381.
DOI:10.1111/j.1399-3054.1993.tb05512.x.
http://dx.doi.org/10.1111%2Fj.1399-3054
.1993.tb05512.x

17. ^ Olson JM (May 2006).
"Photosynthesis in the Archean era".
Photosyn. Res. 88 (2): 109–17.
doi:10.1007/s11120-006-9040-5. PMID
16453059. http://www.springerlink.com/c
ontent/g6n805154602432w/?MUD=MP
{Olson_
2006.pdf}
18. ^ Olson JM (May 2006).
"Photosynthesis in the Archean era".
Photosyn. Res. 88 (2): 109–17.
doi:10.1007/s11120-006-9040-5. PMID
16453059. http://www.springerlink.com/c
ontent/g6n805154602432w/?MUD=MP
{Olson_
2006.pdf}

MORE INFO
[1] Campbell, Reece, "Biology",
2009, 190-198
 
[1] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_1.gif


[2] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_2.gif

4,000,000,000 YBN
18
43) Photosynthesis Photosystem II
evolves. Cells with this system emit
free Oxygen.12

Anaerobic13 14 bacteria use light
particles to convert carbon dioxide gas
and water into glucose, releasing
oxygen gas in the process.15 16

This
is the main system responsible for
producing the Oxygen now in the air of
Earth.17

FOOTNOTES
1. ^
http://www.emc.maricopa.edu/faculty/fara
bee/BIOBK/BioBookPS.html
http://www.ebi
.ac.uk/interpro/potm/2004_11/Page1.htm3
2. ^
http://www.emc.maricopa.edu/faculty/fara
bee/BIOBK/BioBookPS.html
http://www.ebi
.ac.uk/interpro/potm/2004_11/Page1.htm3
3. ^ "photosynthesis". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 14 Jul.
2012 <http://www.britannica.com/EBchecke
d/topic/458172/photosynthesis
>.
4. ^
http://www.emc.maricopa.edu/faculty/fara
bee/BIOBK/BioBookPS.html
http://www.ebi
.ac.uk/interpro/potm/2004_11/Page1.htm3
5. ^ "photosynthesis". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 14 Jul.
2012 <http://www.britannica.com/EBchecke
d/topic/458172/photosynthesis
>.
6. ^ Frank H. Shu, "The Physical
Universe: An Introduction to
Astronomy", 1982,
p537. http://books.google.com/books?id=
v_6PbAfapSAC&pg=PA537

7. ^ "photosynthesis". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 14 Jul.
2012 <http://www.britannica.com/EBchecke
d/topic/458172/photosynthesis
>.
8. ^
http://www.emc.maricopa.edu/faculty/fara
bee/BIOBK/BioBookPS.html
http://www.ebi
.ac.uk/interpro/potm/2004_11/Page1.htm3
9. ^ "photosynthesis". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 14 Jul.
2012 <http://www.britannica.com/EBchecke
d/topic/458172/photosynthesis
>.
10. ^ Frank H. Shu, "The Physical
Universe: An Introduction to
Astronomy", 1982,
p537. http://books.google.com/books?id=
v_6PbAfapSAC&pg=PA537

11. ^ "photosynthesis". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 14 Jul.
2012 <http://www.britannica.com/EBchecke
d/topic/458172/photosynthesis
>.
12. ^
http://www.emc.maricopa.edu/faculty/fara
bee/BIOBK/BioBookPS.html
http://www.ebi
.ac.uk/interpro/potm/2004_11/Page1.htm3
13. ^ Seckbach, J. Algae and
Cyanobacteria in Extreme Environments.
Springer London, Limited, 2007.
Cellular Origin and Life in Extreme
Habitats,
p5-6. http://books.google.com/books?id=
pHevPVcOVVYC&pg=PA5

14. ^ Carr, N.G., and B.A. Whitton. The
Biology of Cyanobacteria. University of
California Press, 1982. Botanical
Monographs, V. 19,
p221. http://books.google.com/books?id=
zbX39nuSOMUC&pg=PA221

15. ^ "photosynthesis". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 14 Jul.
2012 <http://www.britannica.com/EBchecke
d/topic/458172/photosynthesis
>.
16. ^ Frank H. Shu, "The Physical
Universe: An Introduction to
Astronomy", 1982,
p537. http://books.google.com/books?id=
v_6PbAfapSAC&pg=PA537

17. ^ "photosynthesis". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 14 Jul.
2012 <http://www.britannica.com/EBchecke
d/topic/458172/photosynthesis
>.
18. ^ Olson JM (May 2006).
"Photosynthesis in the Archean era".
Photosyn. Res. 88 (2): 109–17.
doi:10.1007/s11120-006-9040-5. PMID
16453059.

MORE INFO
[1] Campbell, Reece, "Biology",
2009, 190-198
 
[1] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_1.gif


[2] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_2.gif

4,000,000,000 YBN
10
51) The end of the Hadean {HADEiN7 }
and start of the Archean {oRKEiN8 }
Eon.9

FOOTNOTES
1. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 30
Dec. 2012.
http://www.answers.com/topic/hadean-time

2. ^ "Archean." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 30 Dec.
2012.
http://www.answers.com/topic/archaean
3. ^
http://www.geosociety.org/science/timesc
ale/

4. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 30
Dec. 2012.
http://www.answers.com/topic/hadean-time

5. ^ "Archean." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 30 Dec.
2012.
http://www.answers.com/topic/archaean
6. ^
http://www.geosociety.org/science/timesc
ale/

7. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 30
Dec. 2012.
http://www.answers.com/topic/hadean-time

8. ^ "Archean." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 30 Dec.
2012.
http://www.answers.com/topic/archaean
9. ^
http://www.geosociety.org/science/timesc
ale/

10. ^ "Divisions of Geologic Time",
2010,
USGS http://pubs.usgs.gov/fs/2010/3059/
pdf/FS10-3059.pdf

 
[1] Geologic Time Scale 2009 UNKNOWN
source: http://www.geosociety.org/scienc
e/timescale/timescl.pdf

3,950,000,000 YBN
11 12 13
37) (Filamentous) multicellularity
evolves in prokaryotes. Photosynthetic
bacteria grow in filaments. Cells stay
fastened together after cell division.7


Multicellularity appears to have
evolved independently multiple times in
the history of life on Earth.8 9

With multicellularity comes the
evolution of differentiation, cells
with different functions.10

FOOTNOTES
1. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

2. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

3. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

4. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

5. ^ Inaki Ruiz-Trillo, Gertraud
Burger, Peter W.H. Holland, Nicole
King, B. Franz Lang, Andrew J. Roger,
Michael W. Gray, The origins of
multicellularity: a multi-taxon genome
initiative, Trends in Genetics, Volume
23, Issue 3, March 2007, Pages 113-118,
ISSN 0168-9525, DOI:
10.1016/j.tig.2007.01.005. (http://www.
sciencedirect.com/science/article/pii/S0
168952507000236)

6. ^ Knoll, Andrew H. “The Multiple
Origins of Complex Multicellularity.”
Annu. Rev. Earth Planet. Sci. 39.1
(2011):
217-239. http://www.annualreviews.org/d
oi/abs/10.1146/annurev.earth.031208.1002
09

7. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

8. ^ Inaki Ruiz-Trillo, Gertraud
Burger, Peter W.H. Holland, Nicole
King, B. Franz Lang, Andrew J. Roger,
Michael W. Gray, The origins of
multicellularity: a multi-taxon genome
initiative, Trends in Genetics, Volume
23, Issue 3, March 2007, Pages 113-118,
ISSN 0168-9525, DOI:
10.1016/j.tig.2007.01.005. (http://www.
sciencedirect.com/science/article/pii/S0
168952507000236)

9. ^ Knoll, Andrew H. “The Multiple
Origins of Complex Multicellularity.”
Annu. Rev. Earth Planet. Sci. 39.1
(2011):
217-239. http://www.annualreviews.org/d
oi/abs/10.1146/annurev.earth.031208.1002
09

10. ^ Nicholas H. Barton, "Evolution",
2007,
p225-226. http://books.google.com/books
?id=mMDFQ32oMI8C&pg=PA225

11. ^ Ted Huntington.
12. ^ Bonner J. T. 1998 The
origins of multicellularity. Integr.
Biol. 1, 27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

13. ^ Ted Huntington.

MORE INFO
[1] Grosberg R. K., Strathmann R.
R. 2007 The evolution of
multicellularity: a minor major
transition? Ann. Rev. Ecol. Evol. Syst.
38, 621–654.
(doi:10.1146/annurev.ecolsys.36.102403.1
14735)
http://www.annualreviews.org/doi/abs/1
0.1146/annurev.ecolsys.36.102403.114735

[2] Rokas A. 2008 The origins of
multicellularity and the early history
of the genetic toolkit for animal
development. Ann. Rev. Genet. 42,
235–251.
(doi:10.1146/annurev.genet.42.110807.091
513) http://apps.webofknowledge.com/Inb
oundService.do?UT=000261767000011&IsProd
uctCode=Yes&mode=FullRecord&product=WOS&
SID=1EHDdbNiNf4NO8nC299&smartRedirect=ye
s&SrcApp=CR&DestFail=http%3A%2F%2Fwww.we
bofknowledge.com%3FDestApp%3DCEL%26DestP
arams%3D%253Faction%253Dretrieve%2526mod
e%253DFullRecord%2526product%253DCEL%252
6UT%253D000261767000011%2526customersID%
253DHighwire%26e%3DQZIAIzGgKoYbxc_i_WNam
laqQ0.s968BNEwQvqhM9p.770dFYju0AbJCFAAcj
orA%26SrcApp%3DHighwire%26SrcAuth%3DHigh
wire&action=retrieve&Init=Yes&SrcAuth=Hi
ghwire&customersID=Highwire&Func=Frame

 
[1] Microgram of filamentous bacteria
from flexible setae. (Courtesy
Zoosystema © 2005) COPYRIGHTED
source: http://bioweb.uwlax.edu/bio203/s
2009/decker_rour/images/yeti-crab-filame
ntous-bacteria.JPG


[2] Filamentous Bacteria Microthrix
Parvicella UNKNOWN
source: http://ebsbiowizard.com/wp-conte
nt/gallery/filamentous-bacteria-microthr
ix-parvicella/filamentous-bacteria-micro
thrix-parvicella.jpg

3,950,000,000 YBN
7 8 9
316) Cell differentiation evolves in
filamentous prokaryotes, creating
organisms with different kinds of
cells.4

One early cell differentiation is that
only the cell at the tip of the
filament can divide while the older
cells below the tip do not divide.5

Multicellular organisms can die from
aging, a series of cell
differentiations that ultimately result
in the inability for the multicellular
body to continue functioning and to
decay.6

FOOTNOTES
1. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

2. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

3. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

4. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

5. ^ Alexandre Meinesz, "How life
began: evolution's three geneses",
2008,
p155. http://books.google.com/books?id=
AL0fo20Tk3sC&pg=PA155

6. ^ Ted Huntington.
7. ^ Tomitani, Akiko et al.
“The Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

8. ^ N. G. Carr, B. A. Whitton, "The
biology of blue-green algae", p238.
http://books.google.com/books?id=fSRPg-D
0Jk0C&pg=PA238&lpg=PA238

9. ^ GOLUBIC, STJEPKO, VLADIMIR N.
SERGEEV, and ANDREW H. KNOLL.
“Mesoproterozoic Archaeoellipsoidès:
Akinetes of Heterocystous
Cyanobacteria.” Lethaia 28.4 (1995):
285–298. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1502-3931.1995.tb01817.
x/abstract


MORE INFO
[1] Bonner J. T. 1998 The origins
of multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

 
[1] Adapted from: Anabaena smitthi
COPYRIGHTED FRANCE
source: http://www.ac-rennes.fr/pedagogi
e/svt/photo/microalg/anabaena.jpg


[2] Anabaena COPYRIGHTED EDU
source: http://home.manhattan.edu/~franc
es.cardillo/plants/monera/anabaena.gif

3,950,000,000 YBN
10 11 12
322) Nitrogen fixation evolves. Cells
can make nitrogen compounds like
ammonia from Nitrogen gas in the air.7
8

FOOTNOTES
1. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

2. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

3. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

4. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

5. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

6. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

7. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

8. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

9. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

10. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

11. ^ N. G. Carr, B. A. Whitton, "The
biology of blue-green algae", p238.
http://books.google.com/books?id=fSRPg-D
0Jk0C&pg=PA238&lpg=PA238

12. ^ GOLUBIC, STJEPKO, VLADIMIR N.
SERGEEV, and ANDREW H. KNOLL.
“Mesoproterozoic Archaeoellipsoidès:
Akinetes of Heterocystous
Cyanobacteria.” Lethaia 28.4 (1995):
285–298. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1502-3931.1995.tb01817.
x/abstract

West Africa9  
[1] Fig. 2. Modern cyanobacterial
akinetes and Archaeoellipsoides
fossils. (A) Three-month-old culture of
living A. cylindrica grown in a medium
without combined nitrogen. A, akinete;
H, heterocyst; V, vegetative cells.
(B–D) Shown are Archaeoellipsoides
fossils from 1,500-Ma Billyakh Group,
northern Siberia (B); 1,650-Ma McArthur
Group, northern Australia (C); and
2,100-Ma Franceville Group, Gabon (D).
(Scale bars, 10 μm.) COPYRIGHTED
source: http://www.pnas.org/content/103/
14/5442/F2.large.jpg


[2] Fig. 2. Modern cyanobacterial
akinetes and Archaeoellipsoides
fossils. (A) Three-month-old culture of
living A. cylindrica grown in a medium
without combined nitrogen. A, akinete;
H, heterocyst; V, vegetative cells.
(B–D) Shown are Archaeoellipsoides
fossils from 1,500-Ma Billyakh Group,
northern Siberia (B); 1,650-Ma McArthur
Group, northern Australia (C); and
2,100-Ma Franceville Group, Gabon (D).
(Scale bars, 10 μm.) COPYRIGHTED
source: http://www.pnas.org/content/103/
14/5442/F2.large.jpg

3,900,000,000 YBN
57) Aerobic cellular respiration
evolves. The first aerobic (or
"oxygenic") cell. These cells use
oxygen to convert glucose into carbon
dioxide, water, and ATP.5

Aerobic cellular respiration evolves as
an alternative to fermentation by using
oxygen to break down the product of
glycolysis, pyruvate, into carbon
dioxide and water, producing up to 38
ATP molecules in the process.6

FOOTNOTE
S
1. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162-184.
2. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162-184.
3. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008,
p162-184.
4. ^ Campbell, Reece, et al, "Biology",
8th edition, 2008, p162-184.
5. ^ Campbell,
Reece, et al, "Biology", 8th edition,
2008, p162-184.
6. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162-184.
 
[1] purple aerobic bacteria UNKNOWN
source: http://endosymbiotichypothesis.f
iles.wordpress.com/2010/09/rain-bacteria
.jpg


[2] Organisms of Rickettsia conorii
(r), a close relative of R. rickettsii,
in a cultured human endothelial cell
are located free in the cytosol. One
rickettsia is dividing by binary
fission (arrowhead). (B) These
rickettsiae can move inside the
cytoplasm of the host cell because of
the propulsive force created by the
''tail'' of host cell actin filaments
(arrow). Bars = 0.5 µm. Photo and
text courtesy of David H. Walker -
http://gsbs.utmb.edu/microbook/ch038.htm
UNKNOWN AND Rickettsia prowazekii
(image with Rickettsia outside of
cell) COPYRIGHTED [1] Rickettsia
prowazekii COPYRIGHTED FAIR USE
source: http://www.bio.davidson.edu/peop
le/sosarafova/Assets/Bio307/liwoeste/Pic
tures/Walker%203%5B1%5D.jpghttp://web.ms
t.edu/~microbio/bio221_2001/Image9.jpg

3,850,000,000 YBN
24
36) The oldest physical evidence for
life: the ratio of carbon-13 to
carbon-12 in grains of ancient apetite
{aPeTIT16 } (which are calcium
phosphate minerals).17 18 19

Life uses the lighter Carbon-12 isotope
and so the ratio of carbon-12 to
carbon-13 is different from a nonliving
source (such as calcium carbonate or
limestone).20 21

FOOTNOTES
1. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html
AND
http://www.nature.com/nature/journal/v
384/n6604/pdf/384055a0.pdf
2. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

3. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

4. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

5. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

6. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

7. ^ "apatite." Britannica Concise
Encyclopedia. Encyclopædia Britannica,
Inc., 1994-2010. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/apatite
8. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

9. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

10. ^ "apatite." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 04
Mar. 2012.
http://www.answers.com/topic/apatite
11. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

12. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

13. ^ "apatite." Britannica Concise
Encyclopedia. Encyclopædia Britannica,
Inc., 1994-2010. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/apatite
14. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

15. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

16. ^ "apatite." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 04
Mar. 2012.
http://www.answers.com/topic/apatite
17. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

18. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

19. ^ "apatite." Britannica Concise
Encyclopedia. Encyclopædia Britannica,
Inc., 1994-2010. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/apatite
20. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

21. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

22. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

23. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

24. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html
AND
http://www.nature.com/nature/journal/v
384/n6604/pdf/384055a0.pdf

MORE INFO
[1] "Banded iron formation."
McGraw-Hill Dictionary of Scientific
and Technical Terms. McGraw-Hill
Companies, Inc., 2003. Answers.com 11
Jul. 2011.
http://www.answers.com/topic/banded-iron
-formation

[2] Mojzsis, S. J. et al. "Evidence for
Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

AND http://www.nature.com/nature/journa
l/v384/n6604/pdf/384055a0.pdf
Akilia Island, Western Greenland22 23
 

[1] Figure 1 from: Mojzsis, S. J. et
al. ''Evidence for Life on Earth Before
3,800 Million Years Ago.'' Nature
384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html COP
YRIGHTED
source: http://www.nature.com/nature/jou
rnal/v384/n6604/pdf/384055a0.pdf


[2] Figure 1 from: Mojzsis, S. J. et
al. ''Evidence for Life on Earth Before
3,800 Million Years Ago.'' Nature
384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html COP
YRIGHTED
source: http://www.nature.com/nature/jou
rnal/v384/n6604/pdf/384055a0.pdf

3,850,000,000 YBN
23
45) The oldest sediment, the Banded
Iron Formation begins.17
Banded Iron
Formation is sedimentary rock that
spans from 3.8 to 1.8 billion years
ago, made of iron-rich silicates (like
silicon dioxide SiO2) with alternating
layers of black colored ferrous
(reduced) iron and red colored ferric
(oxidized) iron.18 19 These
alternating layers represent a
seasonal cycle where the quantity of
free oxygen in the ocean rises and
falls, possibly linked to
photosynthetic organisms.20 21

The atmosphere of Earth still has only
small amounts of oxygen at this time.

FOOTNOT
ES
1. ^ Mojzsis, et al. nature nov 7,
1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102,
2. ^ Mojzsis, et al. nature nov
7, 1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102,
3. ^ Cesare Emiliani, Plant
Earth 1992:407f, and Tjeerd van Andel,
New Views on an Old Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

4. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
5. ^ Konhauser,
Kurt O. et al. “Could Bacteria Have
Formed the Precambrian Banded Iron
Formations?” Geology 30.12 (2002):
1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

6. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
8. ^ Cesare
Emiliani, Plant Earth 1992:407f, and
Tjeerd van Andel, New Views on an Old
Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

9. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
10. ^
Konhauser, Kurt O. et al. “Could
Bacteria Have Formed the Precambrian
Banded Iron Formations?” Geology
30.12 (2002): 1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

11. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

12. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
13. ^ Cesare
Emiliani, Plant Earth 1992:407f, and
Tjeerd van Andel, New Views on an Old
Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

14. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
15. ^
Konhauser, Kurt O. et al. “Could
Bacteria Have Formed the Precambrian
Banded Iron Formations?” Geology
30.12 (2002): 1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

16. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

17. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
18. ^ Cesare
Emiliani, Plant Earth 1992:407f, and
Tjeerd van Andel, New Views on an Old
Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

19. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
20. ^
Konhauser, Kurt O. et al. “Could
Bacteria Have Formed the Precambrian
Banded Iron Formations?” Geology
30.12 (2002): 1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

21. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

22. ^ Mojzsis, et al. nature nov 7,
1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102,
23. ^ Mojzsis, et al. nature nov
7, 1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102, {3850 MYBN}

MORE INFO
[1] Roger Lewin, "Thread of
Life", (New York: Smithsonian Books,
1982). p102
[2]
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

[3] "Banded iron formation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Banded_iron
_formation

Akilia Island, Western Greenland22
 

[1] image of BIF from Akilia from
Nature COPYRIGHTED
source: nature 11/7/96


[2] portion taken
from: Description English: This
image shows a 2.1 billion years old
rock containing black-banded ironstone,
which has a weight of about 8.5 tons.
The approximately two meter high, three
meter wide, and one meter thick block
of stone was found in North America and
belongs to the National Museum of
Mineralogy and Geology in Dresden,
Germany. The rock is located at
+51°2'34.84''
+13°45'26.67''. Deutsch: Dieses Bild
zeigt einen etwa 8,5 Tonnen schweren
und 2,1 Milliarden Jahre alten Block
mit Bändereisenerzen. Der etwa zwei
Meter hohe, drei Meter breite und einen
Meter tiefe Gesteinsblock wurde in
Nordamerika gefunden und gehört dem
Staatlichen Museum für Mineralogie und
Geologie Dresden. Der Block befindet
sich bei den Koordinaten +51°2'34.84''
+13°45'26.67''. Camera
data Camera Nikon D70 Lens Tamron
SP AF 90mm/2.8 Di Macro 1:1 Focal
length 90 mm Aperture f/2.8 Exposure
time 1/250 s Sensivity ISO 200 Please
help translating the description into
more languages. Thanks a lot! If
you want a license with the conditions
of your choice, please email me to
negotiate terms. best new
image Date 26 August
2005 Source Own
work Author André Karwath aka
Aka CC
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/5/5f/Black-band_iron
stone_%28aka%29.jpg/1280px-Black-band_ir
onstone_%28aka%29.jpg

3,500,000,000 YBN
13 14
39) The oldest fossil evidence of life:
stromatolites. Stromatolites made by
photosynthetic bacteria are found in
both Western Australia, and South
Africa.9 10

FOOTNOTES
1. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

2. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

3. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

4. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

5. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

6. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

7. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

8. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

9. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

10. ^ Walter, M. R., R. Buick, and J.
S. R. Dunlop. "Stromatolites
3,400-3,500 Myr Old from the North Pole
Area, Western Australia." Nature
284.5755 (1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

11. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

12. ^ Walter, M. R., R. Buick, and J.
S. R. Dunlop. "Stromatolites
3,400-3,500 Myr Old from the North Pole
Area, Western Australia." Nature
284.5755 (1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

13. ^ Walter, M. R., R. Buick, and J.
S. R. Dunlop. "Stromatolites
3,400-3,500 Myr Old from the North Pole
Area, Western Australia." Nature
284.5755 (1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

14. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

Warrawoona, Western Australia, and, Fig
Tree Group, South Africa11 12  

[1] image on left is from swaziland
source: nature feb 6


[2]
source: 1986

3,500,000,000 YBN
28 29 30 31
287) The oldest fossils of an organism,
and the oldest prokaryote and bacteria
fossils. The organism is similar to
cyanobacteria {SIe-NO-BaK-TERE-u19 },
and is found in the 3,500 million year
old chert (sedimentary rock made of
silica20 ) in Australia21 22 and South
Africa.23

2.8 billion years will pass before the
first animal evolves.24 25

FOOTNOTES
1. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

2. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

3. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

4. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

5. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

6. ^ Record ID81. Universe, Life,
Science, Future. Ted Huntington.
7. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

8. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

9. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

10. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

11. ^ Record ID81. Universe, Life,
Science, Future. Ted Huntington.
12. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

13. ^ "chert." McGraw-Hill Encyclopedia
of Science and Technology. The
McGraw-Hill Companies, Inc., 2005.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/chert
14. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

15. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

16. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

17. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

18. ^ Record ID81. Universe, Life,
Science, Future. Ted Huntington.
19. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

20. ^ "chert." McGraw-Hill Encyclopedia
of Science and Technology. The
McGraw-Hill Companies, Inc., 2005.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/chert
21. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

22. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

23. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

24. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

25. ^ Record ID81. Universe, Life,
Science, Future. Ted Huntington.
26. ^ Schopf, J.
William et al. "Laser-Raman Imagery of
Earth’s Earliest Fossils." Nature
416.6876 (2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

27. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

28. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

29. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

30. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

31. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html


MORE INFO
[1] BIO415 (Author? University?)
Multicelluarity.pdf (t3:
multicellularity of cyanobacteria)
[2] t3:
http://www.mansfield.ohio-state.edu/~sab
edon/biol3018.htm
multicellularity.
"Some cyanobacteria species exist in a
truly, though primitive, multicellular
form in which cellular differentiation
occurs."
Warrawoona, northwestern Western
Australia26 and Onverwacht Group,
Barberton Mountain Land, South Africa27
 

[1] Figure 1 Optical photomicrographs
showing carbonaceous (kerogenous)
filamentous microbial fossils in
petrographic thin sections of
Precambrian cherts. Scale in a
represents images in a and c-i; scale
in b represents image in b. All parts
show photomontages, which is
necessitated by the three-dimensional
preservation of the cylindrical sinuous
permineralized microbes. Squares in
each part indicate the areas for which
chemical data are presented in Figs 2
and 3. a, An unnamed cylindrical
prokaryotic filament, probably the
degraded cellular trichome or tubular
sheath of an oscillatoriacean
cyanobacterium, from the 770-Myr
Skillogalee Dolomite of South
Australia12. b, Gunflintia grandis, a
cellular probably oscillatoriacean
trichome, from the 2,100-Myr Gunflint
Formation of Ontario, Canada13. c, d,
Unnamed highly carbonized filamentous
prokaryotes from the 3,375-Myr Kromberg
Formation of South Africa14: the poorly
preserved cylindrical trichome of a
noncyanobacterial or oscillatoriacean
prokaryote (c); the disrupted,
originally cellular trichomic remnants
possibly of an Oscillatoria- or
Lyngbya-like cyanobacterium (d). e-i,
Cellular microbial filaments from the
3,465-Myr Apex chert of northwestern
Western Australia: Primaevifilum
amoenum4,5, from the collections of The
Natural History Museum (TNHM), London,
specimen V.63164[6] (e); P. amoenum4
(f); the holotype of P.
delicatulum4,5,15, TNHM V.63165[2] (g);
P. conicoterminatum5, TNHM V63164[9]
(h); the holotype of Eoleptonema apex5,
TNHM V.63729[1] (i).
source: Nature416


[2] Fig. 3 Filamentous microfossils:
a, cylindrical microfossil from
Hooggenoeg sample; b, threadlike and
tubular filaments extending between
laminae, Kromberg sample; c,d,e,
tubular filamnets oriented subparallel
to bedding, Kromberg sample; f,
threadlike filament flattened parallel
to bedding, Kromberg sample.
source: 73 - 76 (07 Mar 2002) Letters
to Nature
http://www.nature.com/nature/journal/v41
6/n6876/fig_tab/416073a_F1.html

3,400,000,000 YBN
8
190) The earliest fossils of coccoid
{KoKOED5 } (spherical) bacteria.6

FOOTN
OTES
1. ^ "coccoid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 04
Mar. 2012.
http://www.answers.com/topic/coccoid
2. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

3. ^ "coccoid." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/coccoid
4. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

5. ^ "coccoid." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/coccoid
6. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

7. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

8. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)


MORE INFO
[1] maybe evidence: Nagy, B. and
Nagy, L.A., 1969. Early Precambrian
microstructures: possibly the oldest
fossils on Earth?. Nature 223, pp.
1226-1229.?
Kromberg Formation, Swaziland System,
South Africa7  

[1] Fig. 3. from: Hans D. Pflug,
Earliest organic evolution. Essay to
the memory of Bartholomew Nagy,
Precambrian Research, Volume 106,
Issues 1–2, 1 February 2001, Pages
79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261 (a,b) Organic
microstructures from Kromberg
Formation, Swaziland System, South
Africa (ca 3.4 Ga). TEM-micrographs of
demineralized specimens. (c) Portion of
organic microstructure from Bulawaya
stromatolite (see Fig. 2). (d) Portion
of the mucilagenous sheath of recent
Anabaena sp., cyanobacteria (Fig. d
after Leak, 1967). For magnification of
Fig. c see scale of Fig.
a. COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence/article/pii/S0301926800001261


[2] Fig. 3. from: Hans D. Pflug,
Earliest organic evolution. Essay to
the memory of Bartholomew Nagy,
Precambrian Research, Volume 106,
Issues 1–2, 1 February 2001, Pages
79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261 (a,b) Organic
microstructures from Kromberg
Formation, Swaziland System, South
Africa (ca 3.4 Ga). TEM-micrographs of
demineralized specimens. (c) Portion of
organic microstructure from Bulawaya
stromatolite (see Fig. 2). (d) Portion
of the mucilagenous sheath of recent
Anabaena sp., cyanobacteria (Fig. d
after Leak, 1967). For magnification of
Fig. c see scale of Fig.
a. COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=MiamiCaptionURL&_method=retriev
e&_udi=B6VBP-42G6M5T-7&_image=fig9&_ba=9
&_user=4422&_coverDate=02%2F01%2F2001&_f
mt=full&_orig=browse&_cdi=5932&view=c&_a
cct=C000059600&_version=1&_urlVersion=0&
_userid=4422&md5=27a45a0804747bb4b74eaac
305df2905

3,260,000,000 YBN
7
71) The earliest fossil evidence of
prokaryote reproduction by budding.4

Like binary division, budding is a form
of asexual reproduction. However, with
budding a new individual develops from
a certain point of the parent organism.
The new individual may separate to
exist independently, or the buds may
remain attached, forming colonies.5

FOO
TNOTES
1. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

2. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

3. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

4. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

5. ^ "budding." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 04 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/83411/budding
>.
6. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

7. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

Swartkoppie, South Africa6  
[1] Evolutionary relationships of model
organisms and bacteria that show
unusual reproductive strategies. This
phylogenetic tree (a) illustrates the
diversity of organisms that use the
alternative reproductive strategies
shown in (b). Bold type indicates
complete or ongoing genome projects.
Intracellular offspring are produced by
several low-GC Gram-positive bacteria
such as Metabacterium polyspora,
Epulopiscium spp. and the segmented
filamentous bacteria (SFB). Budding and
multiple fission are found in the
proteobacterial genera Hyphomonas and
Bdellovibrio, respectively. In the case
of the Cyanobacteria, Stanieria
produces baeocytes and Chamaesiphon
produces offspring by budding.
Actinoplanes produce dispersible
offspring by multiple fission of
filaments within the sporangium.
source: http://www.nature.com/nrmicro/jo
urnal/v3/n3/full/nrmicro1096_fs.html
(Nature Reviews Microbiology 3


[2] Electron micrograph of a Pirellula
bacterium from giant tiger prawn tissue
(Penaeus monodon). Notice the large
crateriform structures (C) on the cell
surface and flagella. From Fuerst et
al.
source: 214-224 (2005);
doi:10.1038/nrmicro1096)

3,235,000,000 YBN
3
68) The earliest Archaea fossils.1
FOOT
NOTES
1. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

2. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

3. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

(Sulphur Springs Deposit) Pilbara
Craton of Australia2  

[1] Photomicrographs of filaments from
the Sulphur Springs VMS deposit. Scale
bar, 10 µm. a-f, Straight, sinuous and
curved morphologies, some densely
intertwined. g, Filaments parallel to
the concentric layering. h, Filaments
oriented sub-perpendicular to
banding. Figure 3 from: Rasmussen,
Birger. ''Filamentous Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit.'' Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html C
OPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v405/n6787/abs/405676a0.html


[2] Photomicrographs of filaments from
the Sulphur Springs VMS deposit. Scale
bar, 10 µm. a-f, Straight, sinuous and
curved morphologies, some densely
intertwined. g, Filaments parallel to
the concentric layering. h, Filaments
oriented sub-perpendicular to
banding. Figure 3 from: Rasmussen,
Birger. ''Filamentous Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit.'' Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html C
OPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v405/n6787/abs/405676a0.html

3,200,000,000 YBN
22 23 24 25 26
66) The earliest acritarch fossils
(unicellular microfossils with
uncertain affinity13 14 ). These
acritarchs are also the earliest
possible eukaryote fossils.15 16

Acritarchs appear to be phytoplankton
{FITO-PlaNK-TeN17 } (freely floating
microscopic algae18 19 ) that grow
thick coverings during a resting stage
in their life cycle. Some resemble the
resting stage of modern marine algae
known as dinoflagellates.20

FOOTNOTES
1. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
2. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
3. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

4. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
5. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
6. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
7. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

8. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
9. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
10. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
11. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

12. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
13. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
14. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
15. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

16. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
17. ^ "phytoplankton." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Jun. 2013.
http://www.answers.com/topic/phytoplankt
on

18. ^ "phytoplankton." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 12 May. 2013.
http://www.answers.com/topic/phytoplankt
on

19. ^ "phytoplankton." McGraw-Hill
Encyclopedia of Science and Technology.
The McGraw-Hill Companies, Inc., 2005.
Answers.com 12 May. 2013.
http://www.answers.com/topic/phytoplankt
on

20. ^ Harold Levin, "The Earth Through
Time", 8th ed., 2006, p257.
21. ^ Javaux,
Emmanuelle J., Craig P. Marshall, and
Andrey Bekker. “Organic-walled
microfossils in 3.2-billion-year-old
shallow-marine siliciclastic
deposits.” Nature 463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html

22. ^ Javaux, Emmanuelle J., Craig P.
Marshall, and Andrey Bekker.
“Organic-walled microfossils in
3.2-billion-year-old shallow-marine
siliciclastic deposits.” Nature
463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html

{3.2 bybn}
23. ^ A. H. Knoll, E. J. Javaux,
D. Hewitt and P. Cohen, "Eukaryotic
Organisms in Proterozoic Oceans",
Philosophical Transactions: Biological
Sciences , Vol. 361, No. 1470, Major
Steps in Cell Evolution:
Palaeontological, Molecular and
Cellular Evidence of Their Timing and
Global Effects (Jun. 29, 2006), pp.
1023-1038 http://www.jstor.org/stable/2
0209698
{1.8 bybn}
24. ^
http://www.ucmp.berkeley.edu/protista/di
noflagfr.html
{1.8 bybn}
25. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html
{1900-1600 mybn}
26. ^ Harold
Levin, "The Earth Through Time", 8th
ed., 2006, p257. {1.6 bybn}

MORE INFO
[1] Javaux, Emmanuelle J., Knoll,
Andrew H., Walter, Malcolm,
"Recognizing and Interpreting the
Fossils of Early Eukaryotes", Origins
of Life and Evolution of Biospheres,
2003-02-01, Springer Netherlands,
Vol33, Iss1,
p75-94. http://dx.doi.org/10.1023/A:102
3992712071

[2] Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons, "Archean
Molecular Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

[3] Cédric Berney and Jan Pawlowski,
"A Molecular Time-Scale for Eukaryote
Evolution Recalibrated with the
Continuous Microfossil Record",
Proceedings: Biological Sciences , Vol.
273, No. 1596 (Aug. 7, 2006), pp.
1867-1872 http://www.jstor.org/stable/2
5223537

[4] Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and ecological
complexity in early eukaryotic
ecosystems.” Nature 412.6842 (2001):
66-69. http://www.nature.com/nature/jou
rnal/v412/n6842/abs/412066a0.html

(Moodies Group) South Africa21  
[1] Figure from: Javaux, Emmanuelle
J., Craig P. Marshall, and Andrey
Bekker. “Organic-walled microfossils
in 3.2-billion-year-old shallow-marine
siliciclastic deposits.” Nature
463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html
COPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v463/n7283/full/nature08793.html


[2] Figure from: Javaux, Emmanuelle
J., Andrew H. Knoll, and Malcolm R.
Walter. “Morphological and ecological
complexity in early eukaryotic
ecosystems.” Nature 412.6842 (2001):
66-69. http://www.nature.com/nature/jou
rnal/v412/n6842/abs/412066a0.html Figur
e 1 Protistan microfossils from the
Roper Group. a, c, Tappania plana,
showing asymmetrically distributed
processes and bulbous protrusions
(arrow in a). b, detail of a, showing
dichotomously branching process. d,
Valeria lophostriata. e, Dictyosphaera
sp. f, Satka favosa. The scale bar in a
is 35 µm for a and c; 10 µm for b;
100 µm for d; 15 µm for e; and 40 µm
for f.
source: http://www.nature.com/nature/jou
rnal/v412/n6842/abs/412066a0.html

2,923,000,000 YBN
23
178) The Eubacteria Phylum Firmicutes
(FiRmiKYUTEZ14 ) evolves (Gram positive
bacteria: the cause of botulism,
tetanus, and anthrax).15 16 17

Firmicutes is a phylum of
nonphotosynthetic18 , mainly
gram-positive bacteria. Firmicutes and
Bacteriodetes are the two main groups
of bacteria found in the intestine.19

Firmicutes includes rods and cocci
{KoKSE20 } forms, and some form
endospores.21

An endospore is a tough reduced dry
form of a bacterium, triggered by a
lack of nutrients, that protects the
bacterium, and allows it to be revived
after long periods of time.22

FOOTNOTES

1. ^
http://www.howjsay.com/index.php?word=fi
rmicutes&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Nature v417 n6886 (not
TOL)
4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^ C.Michael Hogan. 2010.
Bacteria. Encyclopedia of Earth. eds.
Sidney Draggan and C.J.Cleveland,
National Council for Science and the
Environment, Washington
DC http://www.eoearth.org/article/Bacte
ria?topic=49480

6. ^
http://www.howjsay.com/index.php?word=fi
rmicutes&submit=Submit

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Nature v417 n6886 (not
TOL)
9. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
10. ^
http://www.howjsay.com/index.php?word=fi
rmicutes&submit=Submit

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
12. ^ Nature v417 n6886 (not
TOL)
13. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
14. ^
http://www.howjsay.com/index.php?word=fi
rmicutes&submit=Submit

15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
16. ^ Nature v417 n6886 (not
TOL)
17. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
18. ^ "bacteria".
Encyclopædia Britannica. Encyclopædia
Britannica Online. Encyclopædia
Britannica Inc., 2012. Web. 08 Sep.
2012 <http://www.britannica.com/EBchecke
d/topic/48203/bacteria/39371/Classificat
ion-by-morphology-biochemistry-and-other
-features
>.
19. ^ "Firmicutes" at Dorland's Medical
Dictionary http://web.archive.org/web/2
0090616022448/http://www.mercksource.com
/pp/us/cns/cns_hl_dorlands_split.jsp?pg=
/ppdocs/us/common/dorlands/dorland/three
/000040400.htm

20. ^ "coccus." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 30 Dec.
2012.
http://www.answers.com/topic/coccus
21. ^ "bacteria". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 08 Sep.
2012 <http://www.britannica.com/EBchecke
d/topic/48203/bacteria/39371/Classificat
ion-by-morphology-biochemistry-and-other
-features
>.
22. ^ C.Michael Hogan. 2010. Bacteria.
Encyclopedia of Earth. eds. Sidney
Draggan and C.J. Cleveland, National
Council for Science and the
Environment, Washington DC
http://www.eoearth.org/article/Bacteri
a?topic=49480

23. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1]
http://en.wikipedia.org/wiki/Peptidoglyc
an

[2] firmicutes only bacteria to make
endospores
http://en.wikipedia.org/wiki/Endospore
[3]
http://en.wikipedia.org/wiki/Firmicutes
[4]
http://www.earthlife.net/prokaryotes/fir
micutes.html

 
[1] Listeria monocytogenes is a
Gram-positive bacterium, in the
division Firmicutes, named for Joseph
Lister. It is motile by means of
flagella. Some studies suggest that 1
to 10% of humans may carry L.
monocytogenes in their
intestines. Researchers have found L.
monocytogenes in at least 37 mammalian
species, both domesticated and feral,
as well as in at least 17 species of
birds and possibly in some species of
fish and shellfish. Laboratories can
isolate L. monocytogenes from soil,
silage, and other environmental
sources. L. monocytogenes is quite
hardy and resists the deleterious
effects of freezing, drying, and heat
remarkably well for a bacterium that
does not form spores. Most L.
monocytogenes are pathogenic to some
degree.
source: http://en.wikipedia.org/wiki/Ima
ge:Listeria.jpg


[2] These are bacteria (about 0.3 µm
in diameter) that do not have outer
walls, only cytoplasmic membranes.
However, they do have cytoskeletal
elements that give them a distinct
non-spherical shape. They look like
schmoos that are pulled along by their
heads. How they are able to glide is a
mystery.
source: http://webmac.rowland.org/labs/b
acteria/projects_glide.html

2,800,000,000 YBN
24
76) The Eubacteria Phylum
Proteobacteria evolves (includes
Rickettsia {the ancestor of all
mitochondria}, gonorrhea, Salmonella,
and Escherichia coli {esRriKEo KOlI16 }
or E coli {E KOlI17 }).18 19 20 21 22

The proteobacteria are the largest
group of bacteria by far in terms of
number of described species.23

FOOTNOTE
S
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
3. ^ Tree of life,
http://tolweb.org/tree/
4. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
5. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^ Tree of life,
http://tolweb.org/tree/
8. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
9. ^ "Escherichia coli."
Dictionary.com Unabridged. Random
House, Inc. 30 Dec. 2012.
http://dictionary.reference.com/browse/E
scherichia coli>.
10. ^ "E. coli." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/escherichia
-coli

11. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
12. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
13. ^ Tree of life,
http://tolweb.org/tree/
14. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
15. ^
http://taxonomicon.taxonomy.nl/TaxonTree
.aspx?id=71320

16. ^ "Escherichia coli."
Dictionary.com Unabridged. Random
House, Inc. 30 Dec. 2012.
http://dictionary.reference.com/browse/E
scherichia coli>.
17. ^ "E. coli." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/escherichia
-coli

18. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
19. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
20. ^ Tree of life,
http://tolweb.org/tree/
21. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
22. ^
http://taxonomicon.taxonomy.nl/TaxonTree
.aspx?id=71320

23. ^ Sadava, D. et al. Life: The
Science of Biology. W. H. Freeman,
2009, p550-551.
24. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004). {2800000000 YBN}

MORE INFO
[1] multicellularity.
http://www.mansfield.ohio-state.edu/~sab
edon/biol3018.htm
multicellularity.
Multicellularity.pdf
http://en.wikipedia.org/wiki/Escherichia
_coli
http://en.wikipedia.org/wiki/Proteobacte
ria
[2] JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html

[3] "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>
[4] conjugation in protists, flagella
in eukaryotes: Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989)
[5] prokaryote
pili and archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

[6] Stackebrandt et al. Proteobacteria
classis nov., a name for the
phylogenetic taxon that includes the
"purple bacteria and their relatives".
Int. J. Syst. Bacteriol., 1988, 38,
321–325. http://ijs.sgmjournals.org/c
ontent/38/3/321.full.pdf

 
[1] Figure 1. Transmission electron
micrograph of the ELB agent in XTC-2
cells. The rickettsia are free in the
cytoplasm and surrounded by an electron
transparent halo. Original
magnification X 30,000. CDC PD
source: www.cdc.gov/ncidod/
eid/vol7no1/raoultG1.htm


[2] Caulobacter crescentus. From
http://sunflower.bio.indiana.edu/~ybrun/
L305.html COPYRIGHTED EDU was in wiki
but appears to be removed
source: http://upload.wikimedia.org/wiki
pedia/en/4/42/Caulobacter.jpg

2,800,000,000 YBN
38
177) Gender and sex (conjugation)
evolve in Escherichia Coli {esRriKEo
KOlI29 } bacteria. Conjugation is the
exchange of DNA (plasmids) by a donor
{male} bacterium through a pilus to a
recipient {female} bacterium.30 31 32
33 34 35 This may be the process that
evolves into eukaryote sexual
reproduction.36

In addition to pili and conjugation,
proteins that can cut DNA and other
proteins that can connect two strands
of DNA evolve.37

FOOTNOTES
1. ^ JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
2. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
3. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
4. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
5. ^ Tree of life,
http://tolweb.org/tree/
6. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
7. ^ JOSHUA LEDERBERG, E.
L. TATUM, "Gene Recombination in
Escherichia Coli", Nature 158, 558-558
(19 October 1946) doi:10.1038/158558a0
Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
8. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
9. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
10. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
11. ^ Tree of life,
http://tolweb.org/tree/
12. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
13. ^ "Escherichia coli."
Dictionary.com Unabridged. Random
House, Inc. 30 Dec. 2012.
http://dictionary.reference.com/browse/E
scherichia coli>.
14. ^ JOSHUA LEDERBERG, E.
L. TATUM, "Gene Recombination in
Escherichia Coli", Nature 158, 558-558
(19 October 1946) doi:10.1038/158558a0
Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
15. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
16. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
17. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
18. ^ Tree of life,
http://tolweb.org/tree/
19. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
20. ^ prokaryote pili and
archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

21. ^ "Escherichia coli."
Dictionary.com Unabridged. Random
House, Inc. 30 Dec. 2012.
http://dictionary.reference.com/browse/E
scherichia coli>.
22. ^ JOSHUA LEDERBERG, E.
L. TATUM, "Gene Recombination in
Escherichia Coli", Nature 158, 558-558
(19 October 1946) doi:10.1038/158558a0
Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
23. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
24. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
25. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
26. ^ Tree of life,
http://tolweb.org/tree/
27. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
28. ^ prokaryote pili and
archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

29. ^ "Escherichia coli."
Dictionary.com Unabridged. Random
House, Inc. 30 Dec. 2012.
http://dictionary.reference.com/browse/E
scherichia coli>.
30. ^ JOSHUA LEDERBERG, E.
L. TATUM, "Gene Recombination in
Escherichia Coli", Nature 158, 558-558
(19 October 1946) doi:10.1038/158558a0
Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
31. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
32. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
33. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
34. ^ Tree of life,
http://tolweb.org/tree/
35. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
36. ^ Ted Huntington.
37. ^ prokaryote
pili and archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

38. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). {2800000000 YBN}
 
[1] the fertility factor or F factor is
a very large (94,500 bp) circular dsDNA
plasmid; it is generally independent of
the host chromosome. COPYRIGHTED
source: http://www.mun.ca/biochem/course
s/3107/images/Fplasmidmap.gif


[2] conjugation (via pilus)
COPYRIGHTED EDU
source: http://www.bio.miami.edu/dana/16
0/conjugation.jpg

2,795,000,000 YBN
23) The first virus evolves.7

These cells depend on the DNA
duplicating and protein producing
systems of other cells to reproduce
themselves. The first viruses may be
made from bacteria, or may be bacteria
initially.8

FOOTNOTES
1. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

2. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

3. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

4. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

5. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

6. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

7. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

8. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

 
[1] Description Electron
micrograph of Bacteriophages Date
Source
en:Image:Phage.jpg Author
en:User:GrahamColm PD
source: http://upload.wikimedia.org/wiki
pedia/commons/5/52/Phage.jpg

2,784,000,000 YBN
11
176) The Eubacteria Phylum,
Planctomycetes {PlaNK-TO-mI-SETS7 }
evolves (also known as
Planctobacteria).8

Planctomycetes are a widely distributed
group of eubacteria that reproduce by
budding, have cell walls that do not
contain peptidoglycan like most
bacteria, and some have a
membrane-bound nucleoid, similar to the
eukaryotic nucleus.9 10

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
9. ^ Gerday, C., N.
Glansdorff, and American Society for
Microbiology. Physiology and
Biochemistry of Extremophiles. ASM
Press, 2007. American Society Mic
Series,
p410. http://books.google.com/books?id=
T0_9nNv3kZoC&pg=PA410

10. ^ Fuerst, John A. “The
Planctomycetes: Emerging Models for
Microbial Ecology, Evolution and Cell
Biology.” Microbiology 141.7 (1995):
1493 –1506.
Print. http://mic.sgmjournals.org/conte
nt/141/7/1493.long

11. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] s10
http://ijs.sgmjournals.org/cgi/reprint/5
0/6/1965

[2]
http://genomebiology.com/2002/3/6/resear
ch/0031

[3]
http://en.wikipedia.org/wiki/Planctomyce
tes

[4] Lee, Kuo-Chang, Rick Webb, and John
Fuerst. “The Cell Cycle of the
Planctomycete Gemmata Obscuriglobus
with Respect to Cell
Compartmentalization.” BMC Cell
Biology 10.1 (2009):
4. http://www.biomedcentral.com/1471-21
21/10/4/

 
[1] Electron micrographs of cells of
new Gemmata-like and Isosphaera-like
isolates. (A) Negatively stained cell
of the Gemmata-like strain JW11-2f5
showing crateriform structures
(arrowhead) and coccoid cell
morphology. Bar marker, 200 nm. (B)
Negatively stained budding cell of
Isosphaera-like strain CJuql1 showing
uniform crateriform structures
(arrowhead) on the mother cell and
coccoid cell morphology. Bar marker,
200 nm. (C) Thin section of
Gemmata-like cryosubstituted cell of
strain JW3-8s0 showing the
double-membrane-bounded nuclear body
(NB) and nucleoid (N) enclosed within
it. Bar marker, 200 nm. (D) Thin
section of Isosphaera-like strain C2-3
possessing a fibrillar nucleoid (N)
within a cytoplasmic compartment
bounded by a single membrane (M) only.
Bar marker, 200 nm. Appl Environ
Microbiol. 2002 January; 68(1):
417-422. doi:
10.1128/AEM.68.1.417-422.2002.
source: http://www.pubmedcentral.gov/art
iclerender.fcgi?tool=pubmed&pubmedid=117
72655


[2] Evolutionary distance tree derived
from comparative analysis of 16S rDNAs
from freshwater and soil isolates and
reference strains of the order
Planctomycetales. Database accession
numbers are shown in parentheses after
species, strain, or clone names.
Bootstrap values of greater than 70%
from 100 bootstrap resamplings from the
distance analysis are presented at
nodes. Thermotoga maritima was used as
an outgroup. Isolates from this study
and representative named species of the
planctomycetes are indicated in bold.
The scale bar represents 0.1 nucleotide
substitution per nucleotide
position. Appl Environ Microbiol.
2002 January; 68(1): 417-422. doi:
10.1128/AEM.68.1.417-422.2002.
source: http://florey.biosci.uq.edu.au/m
ypa/images/fuerst2.gif

2,784,000,000 YBN
29
179) The Eubacteria Phylum,
Actinobacteria {aKTinO-BaK-TER-Eu20 }
evolves (the source of streptomycin and
the cause of tuberculosis and leprosy21
).22 23 24 25 26

The Actinobacteria are a group of
Gram-positive bacteria, that are
rod-shaped or form branching
filaments,27 and include many soil
bacteria28 .

FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ac
tinobacteria&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Nature v417 n6886, not
TOL
4. ^ "Actinobacteria". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Actinobacte
ria

5. ^
http://asylumeclectica.com/malady/archiv
es/leprosy.htm

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^
http://www.howjsay.com/index.php?word=ac
tinobacteria&submit=Submit

8. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
9. ^ Nature v417 n6886, not
TOL
10. ^ "Actinobacteria". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Actinobacte
ria

11. ^
http://asylumeclectica.com/malady/archiv
es/leprosy.htm

12. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
13. ^
http://www.howjsay.com/index.php?word=ac
tinobacteria&submit=Submit

14. ^ Schaechter, M. Desk Encyclopedia
of Microbiology. Academic Press, 2009.
Academic Press,
p1-2. http://books.google.com/books?id=
vO0oU4z36DIC&pg=PA1

15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
16. ^ Nature v417 n6886, not
TOL
17. ^ "Actinobacteria". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Actinobacte
ria

18. ^
http://asylumeclectica.com/malady/archiv
es/leprosy.htm

19. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
20. ^
http://www.howjsay.com/index.php?word=ac
tinobacteria&submit=Submit

21. ^ Schaechter, M. Desk Encyclopedia
of Microbiology. Academic Press, 2009.
Academic Press,
p1-2. http://books.google.com/books?id=
vO0oU4z36DIC&pg=PA1

22. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
23. ^ Nature v417 n6886, not
TOL
24. ^ "Actinobacteria". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Actinobacte
ria

25. ^
http://asylumeclectica.com/malady/archiv
es/leprosy.htm

26. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
27. ^ Lim, D.V. Microbiology.
Kendall/Hunt, 2002,
p391. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA391

28. ^ Schaechter, M. Desk Encyclopedia
of Microbiology. Academic Press, 2009.
Academic Press,
p1-2. http://books.google.com/books?id=
vO0oU4z36DIC&pg=PA1

29. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] "streptomyces." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 04 Sep. 2011.
http://www.answers.com/topic/streptomyce
s

 
[1] Aerial mycelium and spore of
Streptomyces coelicolor. The mycelium
and the oval spores are about 1µm
wide, typical for bacteria and much
smaller than fungal hyphae and spores.
(Scanning electron micrograph, Mark
Buttner, Kim Findlay, John Innes
Centre). COPYRIGHT UK
source: http://www.sanger.ac.uk/Projects
/S_coelicolor/micro_image4.shtml


[2] Frankia is a genus of
nitrogen-fixing soil bacteria, which
possesses a set of features that are
unique amongst symbiotic
nitrogen-fixing microorganisms,
including rhizobia, making it an
attractive taxon to study. These
heterotrophic Gram-positive bacteria
which are able to induce symbiotic
nitrogen-fixing root nodules
(actinorhizas) in a wide range of
dicotyledonous species (actinorhizal
plants), have also the capacity to fix
atmospheric nitrogen in culture and
under aerobic conditions.
source: http://www.ibmc.up.pt/webpagesgr
upos/cam/Frankia.htm

2,775,000,000 YBN
11
174) The Eubacteria Phylum,
Spirochaetes (SPIrOKETEZ7 ) evolves
(the cause of Syphilis, and Lyme
disease).8

Spirochetes {SPIrOKETS9 } are helical
heterotrophs that spiral through their
environment by rotating, internal,
flagellum-like filaments.10

FOOTNOTES
1. ^
www.d.umn.edu/~rhicks1/diversity/Pronunc
iation%20Guide.pdf
2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^
www.d.umn.edu/~rhicks1/diversity/Pronunc
iation%20Guide.pdf
4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^
www.d.umn.edu/~rhicks1/diversity/Pronunc
iation%20Guide.pdf
6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^
www.d.umn.edu/~rhicks1/diversity/Pronunc
iation%20Guide.pdf
8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
9. ^
http://howjsay.com/index.php?word=spiroc
hete&submit=Submit

10. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p569,571.
11. ^ estimated from Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3] "spirochete." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 30
Dec. 2012.
http://www.answers.com/topic/spirochete
 
[1] Syphilis is a complex, sexually
transmitted disease (STD) with a highly
variable clinical course. The disease
is caused by the bacterium, Treponema
pallidum. In the United States, 32,871
cases of syphilis, including 432 cases
of congenital syphilis, were detected
by public health officials in 2002.
Eight of the ten states with the
highest rates of syphilis are located
in the southern region of the United
States.
source: http://www.cdc.gov/nchstp/od/tus
kegee/syphilis.htm


[2] unknown
source: http://uhavax.hartford.edu/bugl/
images/Treponema%20pallidum.jpg

2,775,000,000 YBN
14 15
175) The Eubacteria Phylum
Bacteroidetes {BaKTRrOEDiTEZ10 }
evolves.11 12

Bacteroidetes is composed of
Gram-stain-negative, rod-shaped, mostly
anaerobic, nonsporeforming bacteria
that are widely distributed in the
environment, including in soil, sea
water, and in the guts and on the skin
of animals.13

FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
4. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
6. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
7. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

8. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
9. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
10. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
12. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
13. ^ George M. Garrity, ed.
(November 24, 2010) 1984(Williams &
Wilkins). ^ (in English). The
Bacteroidetes, Spirochaetes,
Tenericutes (Mollicutes),
Acidobacteria, Fibrobacteres,
Fusobacteria, Dictyoglomi,
Gemmatimonadetes, Lentisphaerae,
Verrucomicrobia, Chlamydiae, and
Planctomycetes. Bergey's Manual of
Systematic Bacteriology. 4 (2nd ed.).
New York: Springer. pp. 908. ISBN
978-0-387-95042-6. British Library no.
GBA561951.
14. ^ estimate from Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004).
15. ^
estimate from Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1] Tree of Life
[2]
http://en.wikipedia.org/wiki/Bacteroidet
es

[3]
http://en.wikipedia.org/wiki/Chlorobi
 
[1] Description Bacteroides
biacutis—one of many en:commensal
anaerobic en:Bacteroides spp. in the
en:gastrointestinal tract—cultured in
blood agar medium for 48
hours. Obtained from the CDC Public
Health Image Library. Image credit:
CDC/Dr. V.R. Dowell, Jr. (PHIL #3087),
1972. Date 2006-03-11 (original
upload date) Source Originally from
en.wikipedia; description page is/was
here. Author Original uploader was
MarcoTolo at
en.wikipedia Permission (Reusing this
file) PD-USGOV-HHS-CDC. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/6/6c/Bacteroides_bia
cutis_01.jpg/1280px-Bacteroides_biacutis
_01.jpg


[2] Bacteroides fragilis . From the
Zdravotni University
source: http://biology.kenyon.edu/Microb
ial_Biorealm/bacteria/bacteroidete_chlor
ob_group/bacteroides/bacteroides.htm

2,775,000,000 YBN
11
217) The Eubacteria Phylum Chlamydiae
{Klo-mi-DE-I or Klo-mi-DE-E7 }
evolves.8

Chlamydiae are parasites that can
survive only within animal cells. One
species Chlamydia trachomatis
(TreKOmuTis9 } is the most common cause
of blindness on Earth, and also causes
a common sexually transmitted
disease.10

FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ch
lamydiae&submit=Submit

2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^
http://www.howjsay.com/index.php?word=ch
lamydiae&submit=Submit

4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^
http://www.howjsay.com/index.php?word=ch
lamydiae&submit=Submit

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^
http://www.howjsay.com/index.php?word=ch
lamydiae&submit=Submit

8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
9. ^ "Chlamydia trachomatis."
The American Heritage Stedman's Medical
Dictionary. Houghton Mifflin Company,
2002. Answers.com 30 Dec. 2012.
http://www.answers.com/topic/chlamydia-t
rachomatis

10. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p569.
11. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3]
http://en.wikipedia.org/wiki/Chlamydiae
[4]
http://en.wikipedia.org/wiki/Verrucomicr
obia

 
[1] cell infected with Chlamydia The
Bavoil laboratory studies the
pathogenesis of the obligate
intracellular pathogen, Chlamydia, and
its bacteriophages. Specific research
areas include the role of Chlamydia
type III secretion in pathogenesis and
development, the impact of Chlamydia
phage infection on disease, the role of
the polymorphic membrane protein family
of C. trachomatis in infection and
disease and comparative genomics within
the Chlamydiaceae. [1] Chlamydia
trachomatis wiki, is copyrighted
source: http://www.dental.umaryland.edu/
sebin/p/o/chlamydia_infected_cell2.jpg


[2] wiki, public domain
source: http://en.wikipedia.org/wiki/Chl
amydia_trachomatis

2,775,000,000 YBN
12 13
6309) The Eubacteria Phylum Chlorobi
{KlOROBE} evolves (green sulphur
bacteria).7 8

Chlorobi are obligately anoxygenic
(cannot survive in the presence of
oxygen), photosythesizing bacteria,
that fix carbon from carbon dioxide
into carbon compounds for cell growth,
by using sulfur compounds, hydrogen, or
ferrous iron as electron donors
(oxidizing them).9 10 11

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
3. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
4. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
5. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
6. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
7. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
8. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
9. ^ Margulis, L., and M.J.
Chapman. Kingdoms and Domains: An
Illustrated Guide to the Phyla of Life
on Earth. Elsevier Science,
2009. http://books.google.com/books?id=
9IWaqAOGyt4C&pg=PA88

10. ^ Martin G. Klotz, D.A.B.T.E.H. The
Microbial Sulfur Cycle. Frontiers
E-books. http://books.google.com/books?
id=TINC-SBb3P0C&pg=PA160

11. ^ Bryant, Donald A., and
Niels-Ulrik Frigaard. “Prokaryotic
Photosynthesis and Phototrophy
Illuminated.” Trends in Microbiology
14.11 (2006):
488–496. http://www.sciencedirect.com
/science/article/pii/S0966842X06002265

12. ^ estimate from Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004).
13. ^
estimate from Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1] Tree of Life
[2]
http://en.wikipedia.org/wiki/Bacteroidet
es

[3]
http://en.wikipedia.org/wiki/Chlorobi
 
[1] Description Deutsch: Grüne
Schwefelbakterien (Chlorobiaceae) im
unteren Bereich einer
Winogradsky-Säule Date
20.03.2007 (20 March 2007
(original upload date)) Source
Transferred from de.wikipedia;
transfer was stated to be made by
User:Jacopo Werther. (Original text :
Mikrobiologie Praktikum Universität
Kassel März 2007) Author
kOchstudiO. Original uploader was
KOchstudiO at
de.wikipedia Permission (Reusing this
file) Released into the public
domain (by the author). (Original text
: uneingeschränkte Nutzung) PD
source: http://upload.wikimedia.org/wiki
pedia/commons/e/e7/Green_d_winogradsky.j
pg


[2] Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p194. COPYRIGHTED
source: Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p194.

2,775,000,000 YBN
10
6310) The Eubacteria Phylum
Verrucomicrobia (VeR-rUKO-mI-KrO-BEo7 )
evolves.8

Verrucomicrobia are found in soil,
fresh and marine waters, and hot
springs. Like Planctomycetes, some
members of Verrucomicrobia also have
intracellular membrane enclosed
compartments, including a membrane that
encloses the DNA.9

FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ve
rrucomicrobia&submit=Submit

2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^
http://www.howjsay.com/index.php?word=ve
rrucomicrobia&submit=Submit

4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^
http://www.howjsay.com/index.php?word=ve
rrucomicrobia&submit=Submit

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^
http://www.howjsay.com/index.php?word=ve
rrucomicrobia&submit=Submit

8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
9. ^ Kuo-Chang Lee, Richard I
Webb, Peter H Janssen, Parveen Sangwan,
Tony Romeo, James T Staley and John A
Fuerst, "Phylum Verrucomicrobia
representatives share a
compartmentalized cell plan with
members of bacterial phylum
Planctomycetes", BMC Microbiology,
Volume 9, Number 1 (2009), 5, DOI:
10.1186/1471-2180-9-5. http://www.biome
dcentral.com/1471-2180/9/5

10. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3]
http://en.wikipedia.org/wiki/Chlamydiae
[4]
http://en.wikipedia.org/wiki/Verrucomicr
obia

 
[1] Figure 1 Transmission electron
micrographs of high-pressure frozen and
cryosubstituted Verrucomicrobium
spinosum. A. Cell prepared by
high-pressure freezing and
cryosubstitution showing prostheca
(PT), paryphoplasm (P), and an
intracytoplasmic membrane (ICM)
enclosing a pirellulosome region
containing a condensed fibrillar
nucleoid (N). Inset: enlarged view of
area of cell outlined in the white box
showing cytoplasmic membrane (CM),
paryphoplasm and ICM. B.
freeze-fracture replica of cell showing
cross-fractured paryphoplasm (P) and
fracture faces of ICM and CM. Bar –
500 nm Lee et al. BMC Microbiology
2009 9:5
doi:10.1186/1471-2180-9-5 CC
source: http://www.biomedcentral.com/con
tent/figures/1471-2180-9-5-1-l.jpg


[2] Figure 2 Transmission electron
micrograph of high-pressure frozen and
cryosubstituted Verrucomicrobium
spinosum. Cell prepared by
high-pressure freezing and
cryosubstitution showing prostheca
(PT), ribosome-free paryphoplasm (P),
and an intracytoplasmic membrane (ICM)
enclosing a pirellulosome region
containing a condensed fibrillar
nucleoid (N). Membrane-bounded
vesicle-like compartments within some
prosthecae extensions are also present
(see arrowheads). Bar – 1 μm Lee
et al. BMC Microbiology 2009 9:5
doi:10.1186/1471-2180-9-5 CC
source: http://www.biomedcentral.com/con
tent/figures/1471-2180-9-5-2-l.jpg

2,730,000,000 YBN
7 8
80) Endo and exocytosis evolve. Cells
can now eat other cells.

In endocytosis the plasma membrane
folds inward to bring substances into
the cell.5

In Exocytosis substances contained in
vesicles are released from the cell.6

F
OOTNOTES
1. ^ "endocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/endocytosis

2. ^ "exocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/exocytosis
3. ^ "endocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/endocytosis

4. ^ "exocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/exocytosis
5. ^ "endocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/endocytosis

6. ^ "exocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/exocytosis
7. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 +30mybn guess
and }
8. ^ guess based on Cavalier-Smith
stating that endocytosis occurs before
a cytoskeleton {Nucleus 2700 +30mybn
guess and}
 
[1] Endocytosis and Exocytosis: For
example, this electron micrograph is
showing the process of exocytosis . The
process begins by fusion of the
membranes at the peripheral pole of the
granule. Then an opening is created
which widens to look like an omicron
figure. This opening allows the
granular material to be released. The
membrane is now part of the plasma
membrane and any proteins carried with
it can be incorporated into the plasma
membrane. Note that there is no coating
on the membrane. This figure was taken
from Alberts et al, Molecular Biology
of the Cell, Garland Publishing Third
Edition, 1994 In contrast, this
micrograph shows a figure which looks
something like an omicron, however,
this view is showing receptor mediated
endocytosis of virus particles. In both
cases, the membrane is coated with
clathrin and these represent classical
receptor mediated endocytosis profiles.
Most ligands cannot be visualized by
themselves, like a virus particle.
Therefore, the cytochemist must attach
label to the ligand. Alternatively, the
cytochemist could immunocytochemically
detect the receptor with antibodies
that recognize the extracellular
domain. This figure was taken from
Endocytosis, Edited by Ira Pastan and
Mark C. Willingham, Plenum Press, N.Y.,
1985 COPYRIGHTED
source: http://www.cytochemistry.net/cel
l-biology/end7.jpg


[2] Pinocytosis In the process of
pinocytosis the plasma membrane froms
an invagination. What ever substance
is found within the area of
invagination is brought into the
cell. In general this material will
be dissolved in water and thus this
process is also refered to as
''cellular drinking'' to indicate that
liquids and material dissolved in
liquids are ingested by the
cell. This is opposed to the
ingestion of large particulate material
like bacteria or other cells or cell
debris. UNKNOWN
source: http://academic.brooklyn.cuny.ed
u/biology/bio4fv/page/endocytb.htm

2,700,000,000 YBN
30
60) The eukaryotic cell evolves. The
first cell with a nucleus. The first
protist. The nucleus may develop from
the infolding of plasma membrane.21

There are some differences between
prokaryotic and eukaryotic cells:
In
prokaryotic cells the DNA is
concentrated in a region that is not
membrane enclosed called the "nucleoid"
while in eukaryotic cells most of the
DNA is contained in a nucleus that is
bounded by a double membrane.
Eukaryotic cells are generally much
larger than prokaryotic cells. Typical
bacteria are between 1-5 um in
diameter, while eukaryotic cells are
typically 10-100 um in diameter.22
Unlike prokaryotic cells, eukaryotic
cells have a cytoskeleton. The
cytoskeleton enables eukaryotic cells
to change their shape and to surround
and engulf other cells. Eukaryotic
cells also have internal structures
that prokaryotic cells lack such as
mitochondria and plastids.23 DNA in
prokaryotic cells is usually in the
form of a single circular chromosome,
while DNA in the nucleus of eukaryotes
contains linear chromosomes. Some
organelles in eukaryotes also contain
DNA; most mitochondrial and chloroplast
DNA is also circular reflecting their
prokaryote origin.24

Like prokaryotes, this cell is probably
haploid (has a single unique DNA), most
eukaryotes are diploid (having two sets
of DNA).25 26 27 28

All protist, fungi, animal and plant
cells descend from this common
eukaryotic cell.29

FOOTNOTES
1. ^ Campbell, Reece, et al,
"Biology", 2008, p516-517.
2. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
3. ^ Campbell,
Reece, et al, "Biology", 2008,
p516-517.
4. ^ Campbell, Reece, et al, "Biology",
2008, p98.
5. ^ Campbell, Reece, et al,
"Biology", 2008, p516-517.
6. ^ Jill Saffrey,
"Biology: uniformity & diversity. Core
of life, Book 3, Volume 2", 2001,
p353. http://books.google.com/books?id=
43yiLI1DvwAC&pg=PA353

7. ^ Montgomery Slatkin, "Exploring
evolutionary biology: readings from
American scientist", 1995,
p161. http://books.google.com/books?ei=
AAVdT77TFMiiiQKB8a24Cw

8. ^ Andrew Wallace Hayes, "Principles
and methods of toxicology", 2007,
p1181. http://books.google.com/books?id
=vgHXTId8rnYC&pg=PA1181

9. ^ N. A. Kolchanov, Hwa A. Lim,
"Computer analysis of genetic
macromolecules: structure, function,
and evolution", 1994,
p2. http://books.google.com/books?id=cr
ip5tRcF0YC&pg=PA2

10. ^ "diploid", Oxford Dictionary of
Biochemistry http://www.answers.com/top
ic/diploid

11. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
12. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
13. ^ Campbell,
Reece, et al, "Biology", 2008, p98.
14. ^
Campbell, Reece, et al, "Biology",
2008, p516-517.
15. ^ Jill Saffrey, "Biology:
uniformity & diversity. Core of life,
Book 3, Volume 2", 2001,
p353. http://books.google.com/books?id=
43yiLI1DvwAC&pg=PA353

16. ^ Montgomery Slatkin, "Exploring
evolutionary biology: readings from
American scientist", 1995,
p161. http://books.google.com/books?ei=
AAVdT77TFMiiiQKB8a24Cw

17. ^ Andrew Wallace Hayes, "Principles
and methods of toxicology", 2007,
p1181. http://books.google.com/books?id
=vgHXTId8rnYC&pg=PA1181

18. ^ N. A. Kolchanov, Hwa A. Lim,
"Computer analysis of genetic
macromolecules: structure, function,
and evolution", 1994,
p2. http://books.google.com/books?id=cr
ip5tRcF0YC&pg=PA2

19. ^ "diploid", Oxford Dictionary of
Biochemistry http://www.answers.com/top
ic/diploid

20. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
21. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
22. ^ Campbell,
Reece, et al, "Biology", 2008, p98.
23. ^
Campbell, Reece, et al, "Biology",
2008, p516-517.
24. ^ Jill Saffrey, "Biology:
uniformity & diversity. Core of life,
Book 3, Volume 2", 2001,
p353. http://books.google.com/books?id=
43yiLI1DvwAC&pg=PA353

25. ^ Montgomery Slatkin, "Exploring
evolutionary biology: readings from
American scientist", 1995,
p161. http://books.google.com/books?ei=
AAVdT77TFMiiiQKB8a24Cw

26. ^ Andrew Wallace Hayes, "Principles
and methods of toxicology", 2007,
p1181. http://books.google.com/books?id
=vgHXTId8rnYC&pg=PA1181

27. ^ N. A. Kolchanov, Hwa A. Lim,
"Computer analysis of genetic
macromolecules: structure, function,
and evolution", 1994,
p2. http://books.google.com/books?id=cr
ip5tRcF0YC&pg=PA2

28. ^ "diploid", Oxford Dictionary of
Biochemistry http://www.answers.com/top
ic/diploid

29. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
30. ^ S Blair Hedges,
Hsiong Chen, Sudhir Kumar, Daniel YC
Wang, Amanda S Thompson and Hidemi Wa,
"A genomic timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{split of archae and
eukaryote at c4.0 bybn, but eukaryote
{with nucleus?} at) 2.7 bybn}

MORE INFO
[1] Harold Levin, "The Earth
Through Time", 8th ed., 2006, p256
[2]
Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons, "Archean
Molecular Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

[3] Alexey S. Kondrashov, "EVOLUTIONARY
GENETICS OF LIFE CYCLES", Annual Review
of Ecology and Systematics Vol. 28:
391-435 (Volume publication date
November 1997)
http://arjournals.annualreviews.org/do
i/full/10.1146/annurev.ecolsys.28.1.391;
jsessionid=npo4ogeI2anbnHbeKO

 
[1] Campbell, Reece, et al,
''Biology'', 2008, p517. COPYRIGHTED
source: Campbell, Reece, et al,
"Biology", 2008, p517.


[2]
http://www.regx.de/m_organisms.php#planc
to
source: http://www.regx.de/m_organisms.p
hp#plancto

2,700,000,000 YBN
62) The earliest molecular fossil
evidence of eukaryotes (sterane {STiR
AN13 molecules).14 15 Steranes are
formed from sterols {STeRoLZ16 },
molecules made by mitochondria.17 18

FO
OTNOTES
1. ^ "sterane." McGraw-Hill Dictionary
of Scientific and Technical Terms.
McGraw-Hill Companies, Inc., 2003.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/sterane
2. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
3. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

4. ^ "sterane." McGraw-Hill Dictionary
of Scientific and Technical Terms.
McGraw-Hill Companies, Inc., 2003.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/sterane
5. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
6. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

7. ^ "sterane." McGraw-Hill Dictionary
of Scientific and Technical Terms.
McGraw-Hill Companies, Inc., 2003.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/sterane
8. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
9. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

10. ^ "sterol." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 30 Dec.
2012.
http://www.answers.com/topic/sterol
11. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
12. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

13. ^ "sterane." McGraw-Hill Dictionary
of Scientific and Technical Terms.
McGraw-Hill Companies, Inc., 2003.
Answers.com 30 Dec. 2012.
http://www.answers.com/topic/sterane
14. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
15. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

16. ^ "sterol." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 30 Dec.
2012.
http://www.answers.com/topic/sterol
17. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
18. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

19. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
20. ^ Science,
Vol 285, Issue 5430, 1033-1036 , 13
August 1999 Archean Molecular Fossils
and the Early Rise of
Eukaryotes Jochen J. Brocks, 1,2*
Graham A. Logan, 2 Roger Buick, 1 Roger
E. Summons 2
Northwestern Australia19 20  
[1] Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons,
''Archean Molecular Fossils and the
Early Rise of Eukaryotes'', Science,
Vol 285, Issue 5430, 13 August 1999,
p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short
and http://www.jstor.org/stable/2898534
COPYRIGHTED
source: http://www.sciencemag.org/conten
t/285/5430/1033.short
and http://www.jstor.org/stable/2898534

2,700,000,000 YBN
198) The endoplasmic reticulum evolves
in a eukaryote cell. The endoplasmic
reticulum (or ER) is a membrane system
that extends from the nucleus,
important in the synthesis of proteins
and lipids.4

FOOTNOTES
1. ^ "endoplasmic reticulum."
Britannica Concise Encyclopedia.
Encyclopædia Britannica, Inc.,
1994-2010. Answers.com 28 Nov. 2011.
http://www.answers.com/topic/endoplasmic
-reticulum

2. ^ "endoplasmic reticulum."
Britannica Concise Encyclopedia.
Encyclopædia Britannica, Inc.,
1994-2010. Answers.com 28 Nov. 2011.
http://www.answers.com/topic/endoplasmic
-reticulum

3. ^ "endoplasmic reticulum."
Britannica Concise Encyclopedia.
Encyclopædia Britannica, Inc.,
1994-2010. Answers.com 28 Nov. 2011.
http://www.answers.com/topic/endoplasmic
-reticulum

4. ^ "endoplasmic reticulum."
Britannica Concise Encyclopedia.
Encyclopædia Britannica, Inc.,
1994-2010. Answers.com 28 Nov. 2011.
http://www.answers.com/topic/endoplasmic
-reticulum

 
[1] Figure 1 : Image of n, endoplasmic
reticulum and Golgi apparatus. (1)
Nucleus. (2) Nuclear pore. (3) Rough
endoplasmic reticulum (RER). (4) Smooth
endoplasmic reticulum (SER). (5)
Ribosome on the rough ER. (6) Proteins
that are transported. (7) Transport
vesicle. (8) Golgi apparatus. (9) Cis
face of the Golgi apparatus. (10) Trans
face of the Golgi apparatus. (11)
Cisternae of the Golgi apparatus. I
am the copyright holder of that image
(I might even have the CorelDraw file
around somewhere:-), and I hereby place
the image and all partial images
created from it in the public domain.
So, you are free to use it any way you
like. In fact, I am delighted that one
of my drawings makes it into
print! I can mail you the .cdr file,
if you like (and if I can find it), if
you need a better resolution for
printing. Yours, Magnus
Manske Source: See also User:Magnus
Manske
source: http://en.wikipedia.org/wiki/Ima
ge:Nucleus_ER_golgi.jpg


[2] Description English: The
elongation and membrane targeting
stages of eukaryotic translation. The
ribosome is green and yellow, the tRNAs
are dark blue, and the other proteins
involved are light blue. CC
source: http://upload.wikimedia.org/wiki
pedia/commons/3/3c/Translation.gif

2,690,000,000 YBN
17 18
207) The cytoskeleton
{SI-Te-SKeL-i-TN13 } forms in the
eukaryote cytoplasm.14 15 16

FOOTNOTES
1. ^ "cytoskeleton." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 12
Feb. 2013.
http://www.answers.com/topic/cytoskeleto
n

2. ^ Cavalier-Smith, annals of Botony
2005 vol95 issue 1
3. ^ Margulis, L.
1998. Symbiotic Planet: A New Look at
Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
4. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
5. ^ "cytoskeleton." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 12 Feb. 2013.
http://www.answers.com/topic/cytoskeleto
n

6. ^ Cavalier-Smith, annals of Botony
2005 vol95 issue 1
7. ^ Margulis, L.
1998. Symbiotic Planet: A New Look at
Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
8. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
9. ^ "cytoskeleton." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 12 Feb. 2013.
http://www.answers.com/topic/cytoskeleto
n

10. ^ Cavalier-Smith, annals of Botony
2005 vol95 issue 1
11. ^ Margulis, L.
1998. Symbiotic Planet: A New Look at
Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
12. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
13. ^ "cytoskeleton." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 12 Feb. 2013.
http://www.answers.com/topic/cytoskeleto
n

14. ^ Cavalier-Smith, annals of Botony
2005 vol95 issue 1
15. ^ Margulis, L.
1998. Symbiotic Planet: A New Look at
Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
16. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
17. ^ S Blair Hedges, Hsiong
Chen, Sudhir Kumar, Daniel YC Wang,
Amanda S Thompson and Hidemi Wa, "A
genomic timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 +10mybn guess
and }
18. ^ guess based on ER and golgi
made of same material as cytoskeleton,
and after first eukaryote cell {Nucleus
2700 +10mybn guess and}
 
[1] English: Endothelial cells under
the microscope. Nuclei are stained blue
with DAPI, microtubles are marked green
by an antibody bound to FITC and actin
filaments are labelled red with
phalloidin bound to TRITC. Bovine
pulmonary artery endothelial
cells http://rsb.info.nih.gov/ij/images
/ PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/09/FluorescentCells.jpg


[2] FIG. 7. In vitro polymerization
of cytoskeletal proteins of the
MinD/ParA superfamily. (A) Formation of
MinD filament bundles in the presence
of MinE, ATP, and phospholipid
vesicles. One end of the bundle is
markedly frayed because of the presence
of MinE. (Reprinted from reference 198
with permission of the publisher.
Copyright 2003 National Academy of
Sciences, U.S.A.) (B) Formation of a
ParApTP228(ParF) filament bundle in the
presence of ParBpTP228(ParG) and ATP.
ParBpTP228(ParG) stimulates formation
of the frayed end(s) of the
ParApTP228(ParF) bundle. (Reprinted
from reference 11 by permission from
Macmillan Publishers Ltd.) (C)
Formation of Soj filaments in the
presence of DNA and ATP. (Reprinted
from reference 116 by permission from
Macmillan Publishers Ltd.) UNKNOWN
source: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC1594594/bin/zmr0030621350007
.jpg

2,690,000,000 YBN
11
208) The eukaryote flagellum and cilia
evolve.

The eukaryote flagellum and cilia are
structurally the same5 but are very
different from the prokaryote
flagellum. The eukaryote flagellum is
composed of a characteristic "9+2"
arrangement of microtubules
{mIKrO-TUB-YU-LZ6 } surrounded by a
sheath which is an extension of the
plasma membrane.7 Unlike the
prokaryote flagella that rotate, the
flagella and cilia of eukaryotic cells
undulate in a wave-like motion to
propel the cell.8

Some cilia are nonmotile and serve as
signal-receiving "antennae" for the
cell.9

The sperm cells of algae, animals, and
some plants have flagella.10

FOOTNOTES
1. ^ Campbell, Reece, et al.,
"Biology", Eighth Edition, 2008, p114.
2. ^
"microtubule." Dictionary.com
Unabridged. Random House, Inc. 03 May.
2013.
http://dictionary.reference.com/browse/m
icrotubule>.
3. ^ Dr. P.D. Sharma, "Microbiology &
Plant Pathology", 2007,
p86. http://books.google.com/books?id=B
yDwOIWXp4MC&pg=PA86

4. ^ Campbell, Reece, et al.,
"Biology", Eighth Edition, 2008, p114.
5. ^
Campbell, Reece, et al., "Biology",
Eighth Edition, 2008, p114.
6. ^
"microtubule." Dictionary.com
Unabridged. Random House, Inc. 03 May.
2013.
http://dictionary.reference.com/browse/m
icrotubule>.
7. ^ Sharma, P.D. Microbiology. Rastogi
Publications, 2007,
p86. http://books.google.com/books?id=7
rfpzW7eMW4C&pg=PA86

8. ^ Dr. P.D. Sharma, "Microbiology &
Plant Pathology", 2007,
p86. http://books.google.com/books?id=B
yDwOIWXp4MC&pg=PA86

9. ^ Campbell, Reece, et al.,
"Biology", Eighth Edition, 2008, p114.
10. ^
Campbell, Reece, et al., "Biology",
Eighth Edition, 2008, p114.
11. ^ S Blair
Hedges, Hsiong Chen, Sudhir Kumar,
Daniel YC Wang, Amanda S Thompson and
Hidemi Wa, "A genomic timescale for the
origin of eukaryotes", BMC Evolutionary
Biology 2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -10mybn
guess}
 
[1] Cilia and flagella are projections
from the cell. They are made up of
microtubules , as shown in this cartoon
and are covered by an extension of the
plasma membrane. They are motile and
designed either to move the cell itself
or to move substances over or around
the cell. The primary purpose of cilia
in mammalian cells is to move fluid,
mucous, or cells over their surface.
Cilia and flagella have the same
internal structure. The major
difference is in their length. This
figure shows a cross section of a
cilium next to a longitudinal section.
Below, we will see how the microtubules
are organized in the core (shown in the
cartoon in this figure). Also shown is
the centriole or basal body that
organizes the formation and direction
of the cilia. COPYRIGHTED
source: Description Transmission
electron microscope image, showing an
example of green algae
(Chlorophyta). Chlamydomanas
reinhardtii is a unicellular flagellate
used as a model system in molecular
genetics work and flagellar motility
studies. This image is a
longitudinal section through the
flagella area. In the cell apex is the
basal body that is the anchoring site
for a flagella. Basal bodies originate
from and have a substructure similar to
that of centrioles, with nine
peripheral microtubule triplets(see
structure at bottom center of image).
The two inner microtubules of each
triplet in a basal body become the two
outer doublets in the flagella. This
image also shows the transition region,
with its fibers of the stellate
structure. The top of the image shows
the flagella passing through the cell
wall. Date 20 September
2007 Source Source and public domain
notice at
http://remf.dartmouth.edu/imagesindex.ht
ml Author Dartmouth Electron
Microscope Facility, Dartmouth
College PD


[2] This figure shows an electron
micrograph of a cross section of a
cilium. Note that you can see the
dynein arms and the nexin links. The
dynein arms have ATPase activity. In
the presence of ATP, they can move from
one tubulin to another. They enable the
tubules to slide along one another so
the cilium can bend. The dynein
bridges are regulated so that sliding
leads to synchronized bending. Because
of the nexin and radial spokes, the
doublets are held in place so sliding
is limited lengthwise. If nexin and the
radial spokes are subjected to enzyme
digestion, and exposed to ATP, the
doublets will continue to slide and
telescope up to 9X their length.
COPYRIGHTED
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/9/99/Chlamydomonas_T
EM_09.jpg/1280px-Chlamydomonas_TEM_09.jp
g

2,680,000,000 YBN
8
65) The circular chromosome in the
eukaryote nucleus changes into linear
chromosomes.5

Alternatively, the eukaryotic cell may
descend from a prokaryote that already
has linear DNA.6

Some extant prokaryotes have a linear
chromosome.7

FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Alexey S.
Kondrashov, "EVOLUTIONARY GENETICS OF
LIFE CYCLES", Annual Review of Ecology
and Systematics Vol. 28: 391-435
(Volume publication date November 1997)
http://arjournals.annualreviews.org/do
i/full/10.1146/annurev.ecolsys.28.1.391;
jsessionid=npo4ogeI2anbnHbeKO

8. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 +20mybn
guess}

MORE INFO
[1] not all prokaryotes have
circle of
DNA: http://arjournals.annualreviews.or
g/doi/full/10.1146/annurev.ecolsys.28.1.
391;jsessionid=npo4ogeI2anbnHbeKO

[2] Jumas-Bilak E, Maugard C,
Michaux-Charachon S, Allardet-Servent
A, Perrin A, et al. 1995. Study of the
organization of the genomes of
Escherichia coli, Brucella melitensis
and Agrobacterium tumefaciens by
insertion of a unique restriction site.
Microbiology 141:2425-32 (Medline)
[3] Lezhava A,
Kameoka D, Sugino H, Goshi K, Shinkawa
H, et al. 1997. Chromosomal deletions
in Streptomyces griseus that remove the
afsA locus. Mol. Gen. Genet. 253:478-83
[4]
Marconi RT, Casjens S, Munderloh UG,
Samuels DS. 1996. Analysis of linear
plasmid dimers in Borrelia burgdorferi
sensu lato isolates: implications
concerning the potential mechanisms of
linear plasmid replication. J. Bact.
178:3357-61
 
[1] A DNA molecule is very long (a few
meters) but extremely thin (narrow;
measured in nanometers). Here is an
electron microscope photo of a DNA
strand: PD
source: http://rst.gsfc.nasa.gov/Sect20/
dna1.jpg


[2] [t Is this an accurate image? - Is
a chromosome made of a single wound
strand of DNA? update- no see image
8] Every cell in the human body
(except red blood cells) contains 23
pairs of chromosomes. (a) Each
chromosome is made up of a tightly
coiled strand of DNA. (b) DNA’s
uncoiled state reveals its familiar
double helix shape. If DNA is pictured
as a twisted ladder, its sides, made of
sugar and phosphate molecules, are
connected by (c) rungs made of
chemicals called bases. DNA has four
bases—adenine, thymine, guanine, and
cytosine—that form interlocking
pairs. The order of the bases along the
length of the ladder is the DNA
sequence. PD
source: https://www.llnl.gov/str/June03/
gifs/Stubbs1.gif

2,680,000,000 YBN
216) Histones evolve. Histones are
proteins found in all eukaryotic cell
nuclei that package and order a single
continuous DNA molecule into structural
units called nucleosomes {nUKlEuSOMZ3
}.4 The nucleosomes are coiled into a
30 nanometer fiber called a chromatin,
and then looped again around a
chromosome scaffold into a larger 300
nanometer fiber which forms one of the
two chromatids in a chromosome.5

FOOTNO
TES
1. ^ "nucleosome." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 30
Dec. 2012.
http://www.answers.com/topic/nucleosome
Read more:
http://www.answers.com/main/cite_this_an
swer.jsp#ixzz2Ga2DeYfP
2. ^ Nelson, D.L., and M.M. Cox.
Lehninger Principles of Biochemistry.
W. H. Freeman, 2008. Lehninger
Principles of Biochemistry,
p963. http://books.google.com/books?id=
5Ek9J4p3NfkC

3. ^ "nucleosome." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 30
Dec. 2012.
http://www.answers.com/topic/nucleosome
Read more:
http://www.answers.com/main/cite_this_an
swer.jsp#ixzz2Ga2DeYfP
4. ^ Nelson, D.L., and M.M. Cox.
Lehninger Principles of Biochemistry.
W. H. Freeman, 2008. Lehninger
Principles of Biochemistry,
p963. http://books.google.com/books?id=
5Ek9J4p3NfkC

5. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series.
 
[1] Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats
Series. COPYRIGHTED
source: Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series.


[2] Description Schematic
representation of the assembly of the
core histones into the nucleosome Date
15 November 2005 Source English
Wikipedia Author Richard Wheeler
(Zephyris) GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/8/8a/Nucleosome_structure.
png

2,680,000,000 YBN
5
291) The eukaryote cell evolves two
intermediate stages between cell
division and DNA synthesis.3

In prokaryotes, DNA synthesis can take
place uninterrupted between cell
divisions, but eukaryotes duplicate
their DNA exactly once during a
discrete period between cell
divisions.4

FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p45
2. ^ "cell."
Encyclopædia Britannica. Encyclopædia
Britannica Online. Encyclopædia
Britannica Inc., 2012. Web. 11 Mar.
2012.
<http://www.britannica.com/EBchecked/topi
c/101396/cell
>.
3. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p45
4. ^ "cell."
Encyclopædia Britannica. Encyclopædia
Britannica Online. Encyclopædia
Britannica Inc., 2012. Web. 11 Mar.
2012.
<http://www.britannica.com/EBchecked/topi
c/101396/cell
>.
5. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -20mybn
guess}

MORE INFO
[1] Cooper GM (2000). "Chapter
14: The Eukaryotic Cell Cycle". The
cell: a molecular approach (2nd ed.).
Washington, D.C: ASM Press. ISBN
0-87893-106-6. http://www.ncbi.nlm.nih.
gov/books/NBK9876/

[2] Campbell, Reece, et al, "Biology",
8th Edition, 2008, p228-245
 
[1] Figure 14.1Phases of the cell
cycle The division cycle of most
eukaryotic cells is divided into four
discrete phases: M, G1, S, and G2. M
phase (mitosis) is usually followed by
cytokinesis. S phase is the period
during which DNA replication occurs.
The cell grows throughout interphase,
which includes G1, S, and G2. The
relative lengths of the cell cycle
phases shown here are typical of
rapidly replicating mammalian
cells. From: The Eukaryotic Cell
Cycle The Cell: A Molecular
Approach. 2nd edition. Cooper
GM. Sunderland (MA): Sinauer
Associates; 2000. Copyright © 2000,
Geoffrey M Cooper. COPYRIGHTED
source: http://www.ncbi.nlm.nih.gov/book
s/NBK9876/bin/ch14f1.jpg


[2] The cell cycle. Image from Purves
et al., Life: The Science of Biology,
4th Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/cellcycle.gif

2,670,000,000 YBN
199) The Eukaryote Golgi Apparatus
evolves. The Golgi apparatus packages
proteins and lipids into vesicles for
delivery to targeted destinations.4

FOO
TNOTES
1. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
2. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
3. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
4. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.

MORE INFO
[1] "Endosome." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 28 Dec. 2011.
http://www.answers.com/topic/endosome
 
[1] Figure 1: Image of nucleus,
endoplasmic reticulum and Golgi
apparatus: (1) Nucleus, (2) Nuclear
pore, (3) Rough endoplasmic reticulum
(RER), (4) Smooth endoplasmic reticulum
(SER), (5) Ribosome on the rough ER,
(6) Proteins that are transported, (7)
Transport vesicle, (8) Golgi apparatus,
(9) Cis face of the Golgi apparatus,
(10) Trans face of the Golgi apparatus,
(11) Cisternae of the Golgi apparatus,
(12) Secretory vesicle, (13) Plasma
membrane, (14) Exocytosis, (15)
Cytoplasm, (16) Extracellular space.
source: http://en.wikipedia.org/wiki/Ima
ge:Nucleus_ER_golgi_ex.jpg


[2] no description UNKNOWN
source: http://sun.menloschool.org/~cwea
ver/cells/e/lysosomes/

2,670,000,000 YBN
5
290) The nucleolus evolves. The
nucleolus is a sphere in the nucleus
that makes ribosomal RNA.4

FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
2. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
3. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
5. ^ Ted Huntington guess

MORE INFO
[1] Oxford Dictionary of
Biochemistry Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
All rights
reserved. http://www.answers.com/topic/
nucleolus#ixzz2VAspF99U

 
[1] Nucleolus, COPYRIGHTED
source: http://www.eccentrix.com/members
/chempics/Slike/cell/Nucleolus.jpg


[2] With the combination of x-rays
from the Advanced Light Source and a
new protein-labeling technique,
scientists can see the distribution of
the nucleoli within the nucleus of a
mammary epithelial cell. USG PD
source: http://www.lbl.gov/Science-Artic
les/Archive/xray-inside-cells.html

2,660,000,000 YBN
16
72) Mitosis evolves in Eukaryote
cells.11 12

Mitosis is the process in eukaryotic
cell division in which the duplicated
chromosomes are separated and the
nucleus divides resulting in two new
nuclei, each of which contains an
identical copy of the parental
chromosomes. Mitosis is usually
immediately followed by cytokinesis,
the division of the cytoplasm.13 14

Mitosis is thought to have evolved from
prokaryote binary fission and possible
intermediate stages can be seen in some
protists.15

FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: types of
mitosis, evolution of mitosis.
2. ^ Brusca and
Brusca, "Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
3. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: types of
mitosis, evolution of mitosis.
4. ^ Brusca and
Brusca, "Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
5. ^ "mitosis." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 12 Mar.
2012.
http://www.answers.com/topic/mitosis
6. ^ Campbell, Reece, et al, "Biology",
8th Edition, 2008, p230-233.
7. ^ Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).: types
of mitosis, evolution of mitosis.
8. ^ Brusca
and Brusca, "Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
9. ^ "mitosis." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 12 Mar.
2012.
http://www.answers.com/topic/mitosis
10. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p230-233.
11. ^
Michael Sleigh, "Protozoa and Other
Protists", (London; New York: Edward
Arnold, 1989).: types of mitosis,
evolution of mitosis.
12. ^ Brusca and Brusca,
"Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
13. ^ "mitosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 12
Mar. 2012.
http://www.answers.com/topic/mitosis
14. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p230-233.
15. ^
Campbell, Reece, et al, "Biology", 8th
Edition, 2008, p237.
16. ^ S Blair Hedges,
Hsiong Chen, Sudhir Kumar, Daniel YC
Wang, Amanda S Thompson and Hidemi Wa,
"A genomic timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -40mybn
guess}
 
[1] Mitosis divides genetic information
during cell division Source:
http://www.ncbi.nlm.nih.gov/About/primer
/genetics_cell.html This image is
from the Science Primer, a work of the
National Center for Biotechnology
Information, part of the National
Institutes of Health. As a work of the
U.S. federal government, the image is
in the public domain.
source: http://en.wikipedia.org/wiki/Mit
osis


[2] Prophase: The two round objects
above the nucleus are the centrosomes.
Note the condensed chromatin. from
Gray's Anatomy. Unless stated
otherwise, it is from the online
edition of the 20th U.S. edition of
Gray's Anatomy of the Human Body,
originally published in 1918. Online
editions can be found on Bartleby and
also on Yahoo!
source: UNKNOWN

2,640,000,000 YBN
48
73) Eukaryote sex evolves. This is the
first diploid cell and the first
zygote.29 30

Because of sex, two cells with
different DNA can mix providing more
genetic variety. Having two chromosome
sets also provides a backup copy of
important genes.31 32

Eukaryotic sexual reproduction, which
is initially the fusion of two cells
and their nuclei, may first occur in a
single cell protist that usually
reproduces asexually by mitosis.33 Two
haploid eukaryote cells (gametes, cells
with one set of chromosomes each) merge
and then their nuclei merge to form the
first diploid cell, a cell with two
sets of chromosomes, the first
zygote.34 "Syngamy" {SiNG-Gu-mE35 }
refers to gamete fusion and "karyogamy"
{KaR-E-oG-e-mE36 } to nucleus fusion.
In most cases syngamy is immediately
followed by karyogamy.37

This fusion of two haploid cells
results in the first diploid
single-celled organism, which may then
immediately divide back to two haploid
cells.

Conjugation, the second major kind of
sexual phenomenon, which occurs in the
ciliates, involves the fusion of
gametic nuclei instead of independent
gamete cells.38

Initially sex may be the fusion of two
indistinguishable cells (isogamy) with
gender (anisogamy) only evolving
later.39 Although possibly eukaryote
cell fusion and gender is directly
descended from prokaryote
conjugation.40

All sexual species alternate between
haploid and diploid. There are three
main different types of sexual life
cycles; haplontic, haplodiplontic, and
diplontic.41 42
This begins the
haplontic life cycle: in the entire
life cycle the only diploid cell is the
zygote and mitosis only occurs in the
haploid phase43 .44 45

Most fungi and some protists including
some algae are "haplontic"; they have a
multicellular haploid stage and no
multicellular diploid stage. Plants and
some algae are "haplodiplontic"; they
make both a multicellular haploid and
multicellular diploid organism. Animals
are "diplontic"; they make a diploid
multicellular organism and no
multicellular haploid organism.46 47

FO
OTNOTES
1. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
2. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
3. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
4. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
5. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
6. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
7. ^ Karen Arms, Pamela S. Camp,
"Biology", Third Edition, 1987,
p398. http://books.google.com/books?ei=
fjtmT96tDqPQiAKP2qyiDw&id=ga_uAAAAMAAJ

8. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
9. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
10. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
11. ^ Glenn E. Croston, "Kaplan
AP biology", 2000,
p98. http://books.google.com/books?id=P
WsKAQAAMAAJ

12. ^ Janette B. Benson, Marshall M.
Haith, "Diseases and Disorders in
Infancy and Early Childhood", 2009,
p203.
13. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p252.
14. ^
John Ringo, "Fundamental Genetics",
2004, p201.
15. ^ Rowoand, M.D. Bath Advanced
Science - Biology. Thomas Nelson &
Sons, Limited, 1992. Bath Science 16-19
Series,
p503. http://books.google.com/books?id=
j9cEEouPBogC&pg=PA503

16. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
17. ^ Mark
Kirkpatrick, "The evolution of
haploid-diploid life cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

18. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
19. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
20. ^ Glenn E.
Croston, "Kaplan AP biology", 2000,
p98. http://books.google.com/books?id=P
WsKAQAAMAAJ

21. ^ Janette B. Benson, Marshall M.
Haith, "Diseases and Disorders in
Infancy and Early Childhood", 2009,
p203.
22. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p252.
23. ^
John Ringo, "Fundamental Genetics",
2004, p201.
24. ^ Rowoand, M.D. Bath Advanced
Science - Biology. Thomas Nelson &
Sons, Limited, 1992. Bath Science 16-19
Series,
p503. http://books.google.com/books?id=
j9cEEouPBogC&pg=PA503

25. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
26. ^ Mark
Kirkpatrick, "The evolution of
haploid-diploid life cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

27. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p626.
28. ^ Ted Huntington.
29. ^ Sir Gavin
De Beer, "Atlas of Evolution", (London:
Nelson, 1964).
30. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
31. ^ Glenn E. Croston, "Kaplan AP
biology", 2000,
p98. http://books.google.com/books?id=P
WsKAQAAMAAJ

32. ^ Janette B. Benson, Marshall M.
Haith, "Diseases and Disorders in
Infancy and Early Childhood", 2009,
p203.
33. ^ Charles W. Fox, Daphne J.
Fairbair, "Evolutionary ecology:
concepts and case studies", 2001,
p155. http://books.google.com/books?id=
_dCrIwP85vkC&pg=PA155

34. ^ Janet Louise Leonard, Alex
Córdoba-Aguilar, "The evolution of
primary sexual characters in animals",
2010, p15-16.
35. ^ "syngamy." Dictionary.com
Unabridged. Random House, Inc. 03 Jun.
2013.
http://dictionary.reference.com/browse/s
yngamy>.
36. ^ "karyogamy." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Jun. 2013.
http://www.answers.com/topic/karyogamy
37. ^ Peter Calow, "The encyclopedia of
ecology & environmental management",
1998,
p680. http://books.google.com/books?id=
8LxE9RFpgJcC&pg=PA680

38. ^ "protist." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 17 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/480085/protist
>.
39. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p626.
40. ^ Ted Huntington.
41. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p252.
42. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
43. ^ Rowoand, M.D.
Bath Advanced Science - Biology. Thomas
Nelson & Sons, Limited, 1992. Bath
Science 16-19 Series,
p503. http://books.google.com/books?id=
j9cEEouPBogC&pg=PA503

44. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
45. ^ Mark
Kirkpatrick, "The evolution of
haploid-diploid life cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

46. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p252.
47. ^
John Ringo, "Fundamental Genetics",
2004, p201.
48. ^ estimate based on
diplomonads having sex repro, and
origin of euk being (is now) {Nucleus
2700 -60mybn guess)(was 2710mybn}

MORE INFO
[1] J. William Schopf, "Major
Events in the History of Life",
(Boston, MA: Jones and Bartlett
Publishers, 1992).p57 (was)
 
[1] Theoretical first eukaryote
sex adapted from image of gametic
meiosis GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Zygotic_meiosis.jpg


[2] Theoretical first eukaryote
sex adapted from image of gametic
meiosis GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Zygotic_meiosis.jpg

2,640,000,000 YBN
17
206) Meiosis evolves (one-step meiosis:
a single cell division of a diploid
cell into two haploid cells).12 13

Meiosis, which looks similar to
mitosis14 , is the process of cell
division in sexually reproducing
organisms that reduces the number of
chromosomes in reproductive cells from
diploid to haploid, leading to the
production of gametes in animals and
spores in plants.15

Without the reduction back to haploid,
genomes would double in size with every
generation.16

FOOTNOTES
1. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

2. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
3. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
5. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p253.
6. ^ "meiosis."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 12 Jul. 2011.
http://www.answers.com/topic/meiosis
7. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

8. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
9. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p253.
10. ^ "meiosis."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 12 Jul. 2011.
http://www.answers.com/topic/meiosis
11. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p627.
12. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

13. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
14. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p253.
15. ^
"meiosis." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 12 Jul.
2011.
http://www.answers.com/topic/meiosis
16. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p627.
17. ^ Ted Huntington.

MORE INFO
[1] S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

 
[1] Theoretical first eukaryote
sex adapted from image of gametic
meiosis GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Zygotic_meiosis.jpg


[2] Theoretical first eukaryote
sex adapted from image of gametic
meiosis GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Zygotic_meiosis.jpg

2,610,000,000 YBN
22
296) Gender in eukaryotes evolves.17
Anisogamy {aNISoGomE18 19 }, sex (cell
and nucleus fusion) between two cells
that are different in size or shape.20
21

FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
2. ^ Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
3. ^
"anisogamy." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 29 May.
2012.
http://www.answers.com/topic/anisogamy
4. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

5. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
6. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
7. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
8. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 29 May. 2012.
http://www.answers.com/topic/anisogamy
9. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

10. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
11. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
12. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
13. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 29 May. 2012.
http://www.answers.com/topic/anisogamy
14. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

15. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
16. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
17. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
18. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 29 May. 2012.
http://www.answers.com/topic/anisogamy
19. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

20. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
21. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
22. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -90mybn
guess}
 
[1] Combination of images: Description
English: Different types of
isogamy: A) Isogamy of motile
cells B) Isogamy of non-motile
cells C) Conjugation of
gametangia Date 30 July
2008 Source Vectorised SVG version of
http://en.wikipedia.org/wiki/Image:Isoga
my.png Author Original bitmap version
by Tameeria, SVG version by Qef Other
versions
http://en.wikipedia.org/wiki/Image:
Isogamy.png PD AND Description
Different types of en:anisogamy:
A) Anisogamy of motile gametes B)
Oogamy (non-motile egg cell, motile
sperm cell) C) Anisogamy of
non-motile gametes Date 2008-06-30
02:07 (UTC) Source
Anisogamy.png Author This
SVG version by Qef (talk)
Anisogamy.png: Original uploader was
Tameeria at en.wikipedia Later
versions were uploaded by Helix84 at
en.wikipedia. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/d5/Isogamy.svghttp://upl
oad.wikimedia.org/wikipedia/commons/a/a7
/Anisogamy.svg


[2] Description Different types of
en:anisogamy: A) Anisogamy of motile
gametes B) Oogamy (non-motile egg
cell, motile sperm cell) C) Anisogamy
of non-motile
gametes Date 2008-06-30 02:07
(UTC) Source Anisogamy.png Author
This SVG version by Qef
(talk) Anisogamy.png: Original
uploader was Tameeria at
en.wikipedia Later versions were
uploaded by Helix84 at
en.wikipedia. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/a/a7/Anisogamy.svg/1
000px-Anisogamy.svg.png

2,590,000,000 YBN
7
298) Oogamy {O-oG-omE5 }, a form of
anisogamy, evolves in protists: sex
between a flagellated gamete and an
unflagellated gamete.6

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=oogamy
&submit=Submit

2. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
3. ^
http://howjsay.com/index.php?word=oogamy
&submit=Submit

4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
5. ^
http://howjsay.com/index.php?word=oogamy
&submit=Submit

6. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
7. ^ S Blair Hedges,
Hsiong Chen, Sudhir Kumar, Daniel YC
Wang, Amanda S Thompson and Hidemi Wa,
"A genomic timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -110mybn
guess}
 
[1] Combination of images: Description
English: Different types of
isogamy: A) Isogamy of motile
cells B) Isogamy of non-motile
cells C) Conjugation of
gametangia Date 30 July
2008 Source Vectorised SVG version of
http://en.wikipedia.org/wiki/Image:Isoga
my.png Author Original bitmap version
by Tameeria, SVG version by Qef Other
versions
http://en.wikipedia.org/wiki/Image:
Isogamy.png PD AND Description
Different types of en:anisogamy:
A) Anisogamy of motile gametes B)
Oogamy (non-motile egg cell, motile
sperm cell) C) Anisogamy of
non-motile gametes Date 2008-06-30
02:07 (UTC) Source
Anisogamy.png Author This
SVG version by Qef (talk)
Anisogamy.png: Original uploader was
Tameeria at en.wikipedia Later
versions were uploaded by Helix84 at
en.wikipedia. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/d5/Isogamy.svghttp://upl
oad.wikimedia.org/wikipedia/commons/a/a7
/Anisogamy.svg


[2] Description English: A sperm
cell fertilizing an egg cell Date
Source
http://www.pdimages.com/web9.htm Autho
r Unknown Permission (Reusing this
file)
http://www.pdimages.com/web9.htm P
D
source: http://upload.wikimedia.org/wiki
pedia/commons/8/86/Sperm-egg.jpg

2,580,000,000 YBN
5
300) Diploid cell fusion evolves
(Gamontogamy).1 2 3 4

FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989). p76,p79
2. ^
http://www.zoology.ubc.ca/~redfield/clev
elan.html

3. ^
arjournals.annualreviews.org/doi/pdf/10.
1146/annurev.mi.17.100163.002105
diatoms do gamontogamy
gamontogomy_diatoms_annurev.mi.17.100163
.002105.pdf
4. ^
http://arjournals.annualreviews.org/doi/
abs/10.1146%2Fannurev.ecolsys.28.1.391

annurev.ecolsys.28.1.391 (saved html
file)
5. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -120mybn
guess}
 
[1] The Oxymonad, Notila (diploid
Pacific form) life cycle. COPYRIGHTED

source: http://www.zoology.ubc.ca/~redfi
eld/clevelan/notila.GIF


[2] The Oxymonad, Notila (diploid
Pacific form) life cycle.
COPYRIGHTED
source: http://www.zoology.ubc.ca/~redfi
eld/clevelan/notila.GIF

2,570,000,000 YBN
11
295) Two-step meiosis evolves (diploid
DNA copies and then the cell divides
twice into four haploid cells).6

Most protists divide by two-step
meiosis, and one-step meiosis is rare.7
8

Many of the steps of meiosis closely
resemble corresponding steps in
mitosis. Meiosis, like mitosis, is
preceded by the replication of
chromosomes, but this single
replication is followed not by one but
two consecutive cell divisions which
results in four child cells instead of
the two child cells of mitosis.9

Mitosis produces child cells that are
genetically identical to their parent
cells and each other, while meiosis
produces cells that differ genetically
from their parent cell and from each
other.10

FOOTNOTES
1. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

2. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

3. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989) p71.
5. ^ Igor B.
Raikov, Meiosis in protists: Recent
advances and persisting problems,
European Journal of Protistology,
Volume 31, Issue 1, 15 March 1995,
Pages 1-7, ISSN 0932-4739,
10.1016/S0932-4739(11)80349-4. (http://
www.sciencedirect.com/science/article/pi
i/S0932473911803494)

6. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

7. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989) p71.
8. ^ Igor B.
Raikov, Meiosis in protists: Recent
advances and persisting problems,
European Journal of Protistology,
Volume 31, Issue 1, 15 March 1995,
Pages 1-7, ISSN 0932-4739,
10.1016/S0932-4739(11)80349-4. (http://
www.sciencedirect.com/science/article/pi
i/S0932473911803494)

9. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p253-257.
10. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p253-257.
11. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -130mybn
guess}
 
[1] GametoGenesis. COPYRIGHTED EDU
source: http://www.bio.miami.edu/dana/10
4/gametogenesis.jpg


[2] Sexual cycle oxymonas, identical
to saccinobaculus, one step meiosis.
haploid. COPYRIGHTED CANADA
source: http://www.zoology.ubc.ca/~redfi
eld/clevelan/oxymonas.GIF

2,558,000,000 YBN
5
171) The Eubacteria phylum
"Deinococcus-Thermus" evolves (includes
Thermus Aquaticus {used in PCR}, and
Deinococcus radiodurans {which can
survive long exposure to radiation}).4


FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
3. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
5. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
 
[1] D. radiodurans growing on a
nutrient agar plate. The red color is
due to carotenoid pigment. Links to
816x711-pixel, 351KB JPG. Credit: M.
Daly, Uniformed Services University of
the Health Sciences NASA
source: http://science.nasa.gov/newhome/
headlines/images/conan/D_rad_dish.jpg


[2] Photomicrograph of Deinococcus
radiodurans, from
www.ornl.gov/ORNLReview/ v34 The Oak
Ridge National Laboratory United
States Federal Government This work
is in the public domain because it is a
work of the United States Federal
Government. This applies worldwide. See
Copyright.
source: http://en.wikipedia.org/wiki/Ima
ge:Deinococcus.jpg

2,558,000,000 YBN
17 18
172) The Eubacteria phylum,
Cyanobacteria {SIe-NO-BaK-TERE-u11 }
evolves.

Cyanobacteria are the only prokaryotes
with oxygen-producing photosynthesis,12
and are the ancestor of all eukaryote
plastids (for example chloroplasts).13
14

Fossil evidence suggests that
cyanobacteria existed as early as 3.8
billion years before now, but the
genetic evidence places the origin of
cyanobacteria here at 2.5 billion years
before now.15 16

FOOTNOTES
1. ^ "cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
4. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

5. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
6. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
7. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

8. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p569.
9. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
10. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
11. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

12. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p569.
13. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
14. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
15. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
16. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003).
17. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.ncbi.nlm.nih.gov/pmc/articl
es/PMC533871/
{2558 mybn}
18. ^ S. Blair
Hedges and Sudhir Kumar, "Genomic
clocks and evolutionary timescales",
Trends in Genetics Volume 19, Issue 4 ,
April 2003, Pages 200-206, (2003).
{2558 mybn}

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3] Journal of Molecular
Evolution Publisher: Springer-Verlag
New York ISSN: 0022-2844 (Paper)
1432-1432 (Online) Issue: Volume 42,
Number 2 Date: February 1996 Pages:
194 - 200
[4] Phylogenetic Relationships of
Nonaxenic Filamentous Cyanobacterial
Strains Based on 16S rRNA Sequence
Analysis jme_42_2_1996.pdf
[5]
http://en.wikipedia.org/wiki/Cyanobacter
ia

[6] S Blair Hedges, Hsiong Chen, Sudhir
Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

 
[1] Oscillatoria COPYRIGHTED EDU
source: http://www.stcsc.edu/ecology/alg
ae/oscillatoria.jpg


[2] Lyngbya COPYRIGHTED EDU
source: http://www.stanford.edu/~bohanna
n/Media/LYNGB5.jpg

2,558,000,000 YBN
6
315) The Eubacteria Phylum Chloroflexi
evolves; (Green Non-Sulphur bacteria).4


The Chloroflexi are filamentous
bacteria that perform anoxygenic
photosynthesis.5

FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
3. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
5. ^ Bryant, Donald A., and Niels-Ulrik
Frigaard. “Prokaryotic Photosynthesis
and Phototrophy Illuminated.” Trends
in Microbiology 14.11 (2006):
488–496. http://www.sciencedirect.com
/science/article/pii/S0966842X06002265

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004)
[2] Tree of Life
http://tolweb.org/tree/
 
[1] Chloroflexus photomicrograph from
Doe Joint Genome Institute of US Dept
Energy PD
source: http://en.wikipedia.org/wiki/Ima
ge:Chlorofl.jpg

2,500,000,000 YBN
52) The end of the Archean and start of
the Proterozoic {PrOTReZOiK or
ProTReZOiK11 12 } Eon.13

The Proterozoic spans from 2,500 to 542
million years ago, and represents 42%
of Earth's history.14 15

FOOTNOTES
1. ^ "Proterozoic." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 05
Jun. 2012.
http://www.answers.com/topic/proterozoic

2. ^
http://howjsay.com/index.php?word=proter
ozoic&submit=Submit

3. ^
http://www.geosociety.org/science/timesc
ale/

4. ^
http://www.geosociety.org/science/timesc
ale/

5. ^ Harold Levin, "The Earth Through
Time", 8th Edition, 2006, p243.
6. ^
"Proterozoic." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 05 Jun.
2012.
http://www.answers.com/topic/proterozoic

7. ^
http://howjsay.com/index.php?word=proter
ozoic&submit=Submit

8. ^
http://www.geosociety.org/science/timesc
ale/

9. ^
http://www.geosociety.org/science/timesc
ale/

10. ^ Harold Levin, "The Earth Through
Time", 8th Edition, 2006, p243.
11. ^
"Proterozoic." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 05 Jun.
2012.
http://www.answers.com/topic/proterozoic

12. ^
http://howjsay.com/index.php?word=proter
ozoic&submit=Submit

13. ^
http://www.geosociety.org/science/timesc
ale/

14. ^
http://www.geosociety.org/science/timesc
ale/

15. ^ Harold Levin, "The Earth Through
Time", 8th Edition, 2006, p243.
 
[1] Geologic Time Scale 2009 UNKNOWN
source: http://www.geosociety.org/scienc
e/timescale/timescl.pdf

2,500,000,000 YBN
56) Banded Iron Formation starts to
appear in many places.1 2

FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^
greenspirit.uk
 
[1] portion taken
from: Description English: This
image shows a 2.1 billion years old
rock containing black-banded ironstone,
which has a weight of about 8.5 tons.
The approximately two meter high, three
meter wide, and one meter thick block
of stone was found in North America and
belongs to the National Museum of
Mineralogy and Geology in Dresden,
Germany. The rock is located at
+51°2'34.84''
+13°45'26.67''. Deutsch: Dieses Bild
zeigt einen etwa 8,5 Tonnen schweren
und 2,1 Milliarden Jahre alten Block
mit Bändereisenerzen. Der etwa zwei
Meter hohe, drei Meter breite und einen
Meter tiefe Gesteinsblock wurde in
Nordamerika gefunden und gehört dem
Staatlichen Museum für Mineralogie und
Geologie Dresden. Der Block befindet
sich bei den Koordinaten +51°2'34.84''
+13°45'26.67''. Camera
data Camera Nikon D70 Lens Tamron
SP AF 90mm/2.8 Di Macro 1:1 Focal
length 90 mm Aperture f/2.8 Exposure
time 1/250 s Sensivity ISO 200 Please
help translating the description into
more languages. Thanks a lot! If
you want a license with the conditions
of your choice, please email me to
negotiate terms. best new
image Date 26 August
2005 Source Own
work Author André Karwath aka
Aka CC
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/5/5f/Black-band_iron
stone_%28aka%29.jpg/1280px-Black-band_ir
onstone_%28aka%29.jpg


[2] This rock resulted from
accumulations of ferrous Iron (Fe+2) in
oceans and lakes (which were more green
in color than today; ferrous iron can
produce that color as, for example, in
a Coca-Cola glass bottle). The Iron
readily combined with any available
oxygen, so that the latter was always
destined to be caught up in the iron
precipitates (Fe2O3) and thus didn't
remain in the atmosphere. While BIF is
a hallmark of sedimentary rock
formations during this extended period,
other rocks also formed (shales;
sandstones) but carbonates (limestones)
were much less commmon. Starting about
2.3 billion years ago, oxygen levels
and other factors led to common
production of ferric oxides (Hematite)
that made prominent red beds
periodically to the present. One
variety includes alternating chert
layers, some rich in iron PD
source: http://rst.gsfc.nasa.gov/Sect19/
2929573315_7bb69aeebb.jpg

2,480,000,000 YBN
19 20 21 22 23 24
170) Bacteria live on land.13 14 15

Chemoauthotrophs oxidize sulfur or
nitrogen to form sulfate or nitrate,
and therefore sulfuric or nitric acid,
which then dissolves rocks.16 17 18

FOO
TNOTES
1. ^ Kurt O. Konhauser, Stefan V.
Lalonde, Noah J. Planavsky, Ernesto
Pecoits, Timothy W. Lyons, Stephen J.
Mojzsis, Olivier J. Rouxel, Mark E.
Barley, Carlos Rosìere, Phillip W.
Fralick, Lee R. Kump, Andrey Bekker.
Aerobic bacterial pyrite oxidation and
acid rock drainage during the Great
Oxidation Event. Nature, 2011; 478
(7369): 369 DOI:
10.1038/nature10511 http://dx.doi.org/1
0.1038/nature10511

2. ^ University of Alberta. "New
evidence for the oldest
oxygen-breathing life on land."
ScienceDaily, 19 Oct. 2011. Web. 14
Jul. 2012.
3. ^ Brian Murphy, "Let there be
life", October 20,
2011. http://www.news.ualberta.ca/artic
le.aspx?id=3F6A39F722E14A6BA792EBCA6F989
604

4. ^ Kurt O. Konhauser, Stefan V.
Lalonde, Noah J. Planavsky, Ernesto
Pecoits, Timothy W. Lyons, Stephen J.
Mojzsis, Olivier J. Rouxel, Mark E.
Barley, Carlos Rosìere, Phillip W.
Fralick, Lee R. Kump, Andrey Bekker.
Aerobic bacterial pyrite oxidation and
acid rock drainage during the Great
Oxidation Event. Nature, 2011; 478
(7369): 369 DOI:
10.1038/nature10511 http://dx.doi.org/1
0.1038/nature10511

5. ^ University of Alberta. "New
evidence for the oldest
oxygen-breathing life on land."
ScienceDaily, 19 Oct. 2011. Web. 14
Jul. 2012.
6. ^ Brian Murphy, "Let there be
life", October 20,
2011. http://www.news.ualberta.ca/artic
le.aspx?id=3F6A39F722E14A6BA792EBCA6F989
604

7. ^ Kurt O. Konhauser, Stefan V.
Lalonde, Noah J. Planavsky, Ernesto
Pecoits, Timothy W. Lyons, Stephen J.
Mojzsis, Olivier J. Rouxel, Mark E.
Barley, Carlos Rosìere, Phillip W.
Fralick, Lee R. Kump, Andrey Bekker.
Aerobic bacterial pyrite oxidation and
acid rock drainage during the Great
Oxidation Event. Nature, 2011; 478
(7369): 369 DOI:
10.1038/nature10511 http://dx.doi.org/1
0.1038/nature10511

8. ^ University of Alberta. "New
evidence for the oldest
oxygen-breathing life on land."
ScienceDaily, 19 Oct. 2011. Web. 14
Jul. 2012.
9. ^ Brian Murphy, "Let there be
life", October 20,
2011. http://www.news.ualberta.ca/artic
le.aspx?id=3F6A39F722E14A6BA792EBCA6F989
604

10. ^ Kurt O. Konhauser, Stefan V.
Lalonde, Noah J. Planavsky, Ernesto
Pecoits, Timothy W. Lyons, Stephen J.
Mojzsis, Olivier J. Rouxel, Mark E.
Barley, Carlos Rosìere, Phillip W.
Fralick, Lee R. Kump, Andrey Bekker.
Aerobic bacterial pyrite oxidation and
acid rock drainage during the Great
Oxidation Event. Nature, 2011; 478
(7369): 369 DOI:
10.1038/nature10511 http://dx.doi.org/1
0.1038/nature10511

11. ^ University of Alberta. "New
evidence for the oldest
oxygen-breathing life on land."
ScienceDaily, 19 Oct. 2011. Web. 14
Jul. 2012.
12. ^ Brian Murphy, "Let there be
life", October 20,
2011. http://www.news.ualberta.ca/artic
le.aspx?id=3F6A39F722E14A6BA792EBCA6F989
604

13. ^ Kurt O. Konhauser, Stefan V.
Lalonde, Noah J. Planavsky, Ernesto
Pecoits, Timothy W. Lyons, Stephen J.
Mojzsis, Olivier J. Rouxel, Mark E.
Barley, Carlos Rosìere, Phillip W.
Fralick, Lee R. Kump, Andrey Bekker.
Aerobic bacterial pyrite oxidation and
acid rock drainage during the Great
Oxidation Event. Nature, 2011; 478
(7369): 369 DOI:
10.1038/nature10511 http://dx.doi.org/1
0.1038/nature10511

14. ^ University of Alberta. "New
evidence for the oldest
oxygen-breathing life on land."
ScienceDaily, 19 Oct. 2011. Web. 14
Jul. 2012.
15. ^ Brian Murphy, "Let there be
life", October 20,
2011. http://www.news.ualberta.ca/artic
le.aspx?id=3F6A39F722E14A6BA792EBCA6F989
604

16. ^ Konhauser, K.O. Introduction to
Geomicrobiology. Wiley, 2009, p.
231. http://books.google.com/books?id=n
dGmm920Va8C&pg=PA231

17. ^ Lengeler, J., G. Drews, and H.
Schlegel. Biology of the Prokaryotes.
Wiley, 2009, p.
251. http://books.google.com/books?id=v
XbJa4X5oHsC&pg=PA251

18. ^ Schaechter, M. Encyclopedia of
Microbiology. Elsevier Science, 2009,
p265. http://books.google.com/books?id=
rLhdW5YzuO4C&pg=RA2-PA265

19. ^ Kurt O. Konhauser, Stefan V.
Lalonde, Noah J. Planavsky, Ernesto
Pecoits, Timothy W. Lyons, Stephen J.
Mojzsis, Olivier J. Rouxel, Mark E.
Barley, Carlos Rosìere, Phillip W.
Fralick, Lee R. Kump, Andrey Bekker.
Aerobic bacterial pyrite oxidation and
acid rock drainage during the Great
Oxidation Event. Nature, 2011; 478
(7369): 369 DOI:
10.1038/nature10511 http://dx.doi.org/1
0.1038/nature10511

20. ^ University of Alberta. "New
evidence for the oldest
oxygen-breathing life on land."
ScienceDaily, 19 Oct. 2011. Web. 14
Jul. 2012.
21. ^ Brian Murphy, "Let there be
life", October 20,
2011. http://www.news.ualberta.ca/artic
le.aspx?id=3F6A39F722E14A6BA792EBCA6F989
604

22. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). (2600-2700my)
23. ^ University of
Tennessee at Knoxville. "Bacteria's
move from sea to land may have occurred
much later than thought." ScienceDaily,
22 Dec. 2011. Web. 14 Jul.
2012. http://www.sciencedaily.com/relea
ses/2011/12/111222195017.htm

24. ^ Florence Wisniewski-Dyé, Kirill
Borziak, Gurusahai Khalsa-Moyers,
Gladys Alexandre, Leonid O.
Sukharnikov, Kristin Wuichet, Gregory
B. Hurst, W. Hayes McDonald, Jon S.
Robertson, Valérie Barbe, Alexandra
Calteau, Zoé Rouy, Sophie Mangenot,
Claire Prigent-Combaret, Philippe
Normand, Mickaël Boyer, Patricia
Siguier, Yves Dessaux, Claudine
Elmerich, Guy Condemine, Ganisan
Krishnen, Ivan Kennedy, Andrew H.
Paterson, Victor González, Patrick
Mavingui, Igor B. Zhulin. Azospirillum
Genomes Reveal Transition of Bacteria
from Aquatic to Terrestrial
Environments. PLoS Genetics, 2011; 7
(12): e1002430 DOI:
10.1371/journal.pgen.1002430

MORE INFO
[1] "pyrite." The American
Heritage� Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
May. 2013.
http://www.answers.com/topic/pyrite
 
[1] Acidic waste water from a modern
mining site supports the same oxygen
using bacterial life that appeared on
Earth 2.48 billion years ago. UNKNOWN

source: http://media.news.ualberta.ca/~/
media/University%20of%20Alberta/Administ
ration/External%20Relations/ExpressNews/
Images/2011/10/111020-RocksBanner-cw.jpg


[2] Bacillus specie soil
bacteria. UNKNOWN
source: http://www.scharfphoto.com/fine_
art_prints/archives/199812-054-Soil-Bact
eria.jpg

2,400,000,000 YBN
59) Start of a 200 million year ice
age.4

FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
4. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
 
[1] snowball Earth UNKNOWN
source: http://www.cosmosmagazine.com/fi
les/imagecache/feature/files/features/pr
int/20090528_snowball_earth.jpg


[2] Snowball Earth Snowball Earth
describes a theory that for millions of
years the Earth was entirely smothered
in ice, stretching from the poles to
the tropics. This freezing happened
over 650 million years ago in the
Pre-Cambrian, though it's now thought
that there may have been more than one
of these global glaciations. They
varied in duration and extent but
during a full-on snowball event, life
could only cling on in ice-free
refuges, or where sunlight managed to
penetrate through the ice to allow
photosynthesis. UNKNOWN
source: http://www.bbc.co.uk/nature/imag
es/ic/credit/640x395/s/sn/snowball_earth
/snowball_earth_1.jpg

2,300,000,000 YBN
48) The oldest "Red Beds", iron oxide
formed on land, begin here, and are
also evidence of more free oxygen in
the air of Earth.9 10

FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

3. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
4. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

5. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
6. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
8. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

9. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
10. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

 
[1]
http://www.kgs.ukans.edu/Extension/redhi
lls/redhills.html
source: http://www.kgs.ukans.edu/Extensi
on/redhills/redhills.html


[2] In Archean rocks, metals tend to
occur in low oxidation states (for
example, Fe2+ instead of Fe3+)
indicating a high metal:oxygen ratio in
the oceans and atmosphere. The
sediments are essentially rust-free.
After the late Proterozoic,
sedimentary deposits often have reddish
colors and are called red beds due to
the presence of iron-oxide coatings
between sand grains. From the later
Proterozoic onward, enough free oxygen
has been available to oxidize iron in
sediments. A sandstone butte outside
of Sedona, Arizona. Public domain
image by Jon Sullivan. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/3/38/Butte_pdphoto_roadtri
p_24_bg_021604.jpg

2,000,000,000 YBN
9 10 11
63) A parasitic bacterium, closely
related to Rickettsia prowazekii, an
aerobic proteobacteria, is engulfed by
an early eukaryote cell and over time a
symbiotic relationship evolves within
the eukaryote cell (an endosymbiosis)
where the Rickettsia becomes the
mitochondria.

Mitochondria are membrane-bound
organelles found in the cytoplasm of
almost all eukaryotic cells, and are
where cellular respiration occurs
producing most of the ATP in a
eukaryotic cell.7

In eukaryotes the mitochondria perform
the Citric Acid Cycle and Oxidative
phosphorylation using oxygen to
breakdown pyruvate from glycolysis into
carbon dioxide and water, and provide
up to 36 ATP molecules.8

FOOTNOTES
1. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

2. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

3. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

4. ^ "mitochondrion." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 23 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/386130/mitochondrion
>.
5. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p100.
6. ^
"mitochondrion." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 23 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/386130/mitochondrion
>.
7. ^ "mitochondrion." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 23 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/386130/mitochondrion
>.
8. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p162,166,176.
9. ^ B. Franz
Lang, Michael W. Gray, and Gertraud
Burger, "Mitochondrial Genome Evolution
and the Origin of Eukaryotes", Annu.
Rev. Genet., V33, p351-397, p385.
1999. {2 BYBN}
10. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html
{average of)
2230-1840 bybn} {earliest of) 2350-1640
bybn} {average of 1995my) 2350-1640
mybn}
11. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{1.8 bybn}

MORE INFO
[1] Michael W. Gray, et al,
"Genome structure and gene content in
protist mitochondrial DNAs", Nucl.
Acids Res. (1998) 26(4): 865-878
doi:10.1093/nar/26.4.865
http://nar.oxfordjournals.org/content/
26/4/865.full

 
[1] Figure from: Michael W. Gray, et
al, ''Genome structure and gene content
in protist mitochondrial DNAs'',
Nucl. Acids Res. (1998) 26(4):
865-878 doi:10.1093/nar/26.4.865
http://nar.oxfordjournals.org/content/
26/4/865.full Phylogenetic hypothesis
of the eukaryotic lineage based on
ultrastructural and molecular data.
Organisms are divided into three main
groups distinguished by mitochondrial
cristal shape (either discoidal,
flattened or tubular). Unbroken lines
indicate phylogenetic relationships
that are firmly supported by available
data; broken lines indicate
uncertainties in phylogenetic
placement, resolution of which will
require additional data. Color coding
of organismal genus names indicates
mitochondrial genomes that have been
completely (Table 1), almost completely
(Jakoba, Naegleria and
Thraustochytrium) or partially (*)
sequenced by the OGMP (red), the FMGP
(black) or other groups (green). Names
in blue indicate those species whose
mtDNAs are currently being sequenced by
the OGMP or are future candidates for
complete sequencing. Amitochondriate
retortamonads are positioned at the
base of the tree, with broken arrows
denoting the endosymbiotic origin(s) of
mitochondria from a Rickettsia-like
eubacterium. Macrophar.,
Macropharyngomonas.
source: http://nar.oxfordjournals.org/co
ntent/vol26/issue4/images/gkb18201.gif


[2] Figure 1 Phylogenetic tree of
eukaryotes based on ultrastructural and
molecular data. Organisms are
sub-divided into main groups as
discussed in the text. Only a few
representative species for which
complete (or almost complete) mtDNA
sequences are known are shown in each
lineage. In some cases, line drawings
or actual pictures of the organisms are
provided (Acanthamoeba, M. Nagata; URL:
http://protist.i.hosei.ac.jp/PDB/PCD3379
/htmls/21.html; Allomyces, Tom Volk;
URL:
http://botit.botany.wisc.edu/images/332/
Chytridiomycota/Allomyces_r_So_pa/A._arb
uscula_pit._sporangia_tjv.html;
Amoebidium, URL:
http://cgdc3.igmors.upsud.fr/microbiolog
ie/mesomycetozoaires.htm; Marchantia,
URL:
http://www.science.siu.edu/landplants/He
patophyta/images/March.female.JPEG
Scenedesmus, Entwisle et al.,
http://www.rbgsyd.gov.au/_data/page/1824
/Scenedesmus.gif). The color-coding of
the main groups (alternating between
dark and light blue) on the outer
circle corresponds to the color-coding
of the species names. Unbroken lines
indicate phylogenetic relationships
that are firmly supported by available
molecular data; broken lines indicate
uncertainties in phylogenetic
placement, resolution of which will
require additional sequence data. [t:
why not color code or add which type of
mito?]
source: http://arjournals.annualreviews.
org/doi/full/10.1146/annurev.genet.37.11
0801.142526

1,874,000,000 YBN
26
61) The earliest large filamentous
fossil (Grypania).13 14 Grypania
spiralis is about 10 cm long, and is
thought to be either a green alga or a
large cyanobacterium.15 16 If
eukaryote, Grypania would be the
earliest non-acritarch eukaryote
fossil.17 18 19

Grypania may be like Acetabularia
{aS-i-TaB-YU-lAR-Eu20 }, a large
single-celled green algae.21
The
Grypania fossils have no blade
(analogous to a leaf) or holdfast
structures,22 but stretching implies
that Grypania was a sessile organism
connected to a surface.23

FOOTNOTES
1. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
2. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
3. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
4. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
5. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
6. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
7. ^ Zhu Shixing
and Chen Huineng, "Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
8. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
9. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
10. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
11. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
12. ^ Zhu Shixing
and Chen Huineng, "Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
13. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
14. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
15. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
16. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
17. ^ Zhu Shixing
and Chen Huineng, "Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
18. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
19. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
20. ^
"Acetabular." Dictionary.com
Unabridged. Random House, Inc. 02 May.
2013.
http://dictionary.reference.com/browse/A
cetabular>.
21. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
22. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
23. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
24. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 http://www.sciencemag.org/conte
nt/257/5067/232

AND www.jstor.org/discover/10.2307/2877
532 {Han_Runnegar_Grypania_19920710.pdf
}
25. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
26. ^ Schneider
et al 2002. D.A. Schneider, M.E.
Bickford, W.F. Cannon, K.J. Schulz and
M.A. Hamilton, Age of volcanic rocks
and syndepositional iron formations,
Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012. {1874
mybn}

MORE INFO
[1] Samuelsson, Joakim, Peter R
Dawes, and Gonzalo Vidal.
“Organic-walled Microfossils from the
Proterozoic Thule Supergroup, Northwest
Greenland.” Precambrian Research
96.1–2 (1999):
1–23. http://www.sciencedirect.com/sc
ience/article/pii/S0301926898001235

[2] Jacques Dumais, Kyle Serikawa and
Dina F Mandoli, "Acetabularia: A
Unicellular Model for Understanding
Subcellular Localization and
Morphogenesis during Development",
Journal of Plant Growth
Regulation Volume 19, Number 3 (2000),
253-264, DOI:
10.1007/s003440000035 http://www.oeb.ha
rvard.edu/faculty/dumais/Publications/JP
GR2000.2.pdf

(Banded Iron Formation) Michigan, USA24
25  

[1]
file:/root/web/Grypania_spiralis_wmel000
0.htm
source: file:/root/web/Grypania_spiralis
_wmel0000.htm


[2]
http://www.peripatus.gen.nz/paleontology
/lrgGrypaniaspiralis.jpg
source: http://www.peripatus.gen.nz/pale
ontology/lrgGrypaniaspiralis.jpg

1,800,000,000 YBN
46) The end of the Banded Iron
Formation.5

FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
4. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
5. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
 
[1] Ted Huntington PD
source: http://upload.wikimedia.org/wiki
pedia/commons/6/62/MichiganBIF.jpg


[2] Ted Huntington PD
source: Ted Huntington

1,570,000,000 YBN
19 20 21
99) The first homeobox genes evolve.
These genes regulate the building of
major body parts in algae, plants,
fungi and animals.13 14 15 16

For example, when a homeobox gene
responsible for growing a mouse eye is
added to the cell of a fruit-fly embryo
that is destined to be a leg, an extra
fruit fly eye is built on the leg.17 18

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p425,434.
2. ^ Richard Cowen,
"History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p425,434.
4. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
5. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p425,434.
6. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
7. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p425,434.
8. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
9. ^ Thomas R. Bürglin,
"Analysis of TALE superclass homeobox
genes (MEIS, PBC, KNOX, Iroquois, TGIF)
reveals a novel domain conserved
between plants and animals", Nucl.
Acids Res. (1997) 25(21): 4173-4180
doi:10.1093/nar/25.21.4173
http://nar.oxfordjournals.org/content/
25/21/4173.abstract

10. ^ Mukherjee, Krishanu, Luciano
Brocchieri, and Thomas R. Bürglin.
“A Comprehensive Classification and
Evolutionary Analysis of Plant Homeobox
Genes.” Molecular Biology and
Evolution 26.12 (2009): 2775
-2794. http://mbe.oxfordjournals.org/co
ntent/26/12/2775.short

11. ^ Halder, G, P Callaerts, and WJ
Gehring. “Induction of ectopic eyes
by targeted expression of the eyeless
gene in Drosophila.” Science 267.5205
(1995) : 1788 -1792.
http://www.sciencemag.org/citmgr?gca=s
ci;267/5205/1788

12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p399.
13. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p425,434.
14. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
15. ^ Thomas R.
Bürglin, "Analysis of TALE superclass
homeobox genes (MEIS, PBC, KNOX,
Iroquois, TGIF) reveals a novel domain
conserved between plants and animals",
Nucl. Acids Res. (1997) 25(21):
4173-4180 doi:10.1093/nar/25.21.4173
http://nar.oxfordjournals.org/content/
25/21/4173.abstract

16. ^ Mukherjee, Krishanu, Luciano
Brocchieri, and Thomas R. Bürglin.
“A Comprehensive Classification and
Evolutionary Analysis of Plant Homeobox
Genes.” Molecular Biology and
Evolution 26.12 (2009): 2775
-2794. http://mbe.oxfordjournals.org/co
ntent/26/12/2775.short

17. ^ Halder, G, P Callaerts, and WJ
Gehring. “Induction of ectopic eyes
by targeted expression of the eyeless
gene in Drosophila.” Science 267.5205
(1995) : 1788 -1792.
http://www.sciencemag.org/citmgr?gca=s
ci;267/5205/1788

18. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p399.
19. ^ Mukherjee K,
Bürglin TR, "MEKHLA, a novel domain
with similarity to PAS domains, is
fused to plant homeodomain-leucine
zipper III proteins.", Plant Physiol
2006;140:1142-1150. http://www.plantphy
siol.org/content/140/4/1142.full

20. ^ Mukherjee, Krishanu, Luciano
Brocchieri, and Thomas R. Bürglin.
“A Comprehensive Classification and
Evolutionary Analysis of Plant Homeobox
Genes.” Molecular Biology and
Evolution 26.12 (2009): 2775
-2794. http://mbe.oxfordjournals.org/co
ntent/26/12/2775.short
{1982 mybn (at
acrasid slime molds, before brown
algae}
21. ^ Jongmin Nam, Claude W.
dePamphilis, Hong Ma, and Masatoshi
Nei, "Antiquity and Evolution of the
MADS-Box Gene Family Controlling Flower
Development in Plants", Mol Biol Evol
(2003) 20(9): 1435-1447 first published
online May 30, 2003
doi:10.1093/molbev/msg152
http://mbe.oxfordjournals.org/content/
20/9/1435.abstract
{1982 mybn (at
acrasid slime molds, before brown
algae}
 
[1] {ULSF: Homeobox genes} Desajustes
en el modelo UNKNOWN
source: http://cnho.files.wordpress.com/
2010/07/hox_genes_illus.png


[2] {ULSF: Homeobox genes} UNKNOWN
source: http://cnho.files.wordpress.com/
2010/07/homeobox1.jpg

1,570,000,000 YBN
13 14
197) The ancestor of all living
eukaryotes divides into bikont and
unikont descendants. Bikonts lead to
all Chromalveolates, Excavates,
Rhizaria, and Plants. Unikonts lead to
all Amoebozoa, Animals and Fungi.10 11
12

FOOTNOTES
1. ^ Stechmann A, Cavalier-Smith T,
"The root of the eukaryote tree
pinpointed.", 2003, Curr. Biol. 13,
R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

2. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
3. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
4. ^ Stechmann
A, Cavalier-Smith T, "The root of the
eukaryote tree pinpointed.", 2003,
Curr. Biol. 13, R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

5. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
6. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
7. ^ Stechmann
A, Cavalier-Smith T, "The root of the
eukaryote tree pinpointed.", 2003,
Curr. Biol. 13, R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

8. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
9. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
10. ^ Stechmann
A, Cavalier-Smith T, "The root of the
eukaryote tree pinpointed.", 2003,
Curr. Biol. 13, R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

11. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
12. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
13. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
{problem with 1250 my bangia red algae
fossils)1126 mybn}
14. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1570 mybn}

MORE INFO
[1] Thomas Cavalier-Smith, Ema
E.-Y. Chao, "Phylogeny of Choanozoa,
Apusozoa, and Other Protozoa and Early
Eukaryote Megaevolution", J Mol Evol
(2003) 56:540 563
[2] J Mol Evol (2003)
56:540 563 Phylogeny of Choanozoa,
Apusozoa, and Other Protozoa and Early
Eukaryote Megaevolution Thomas
Cavalier-Smith, Ema E.-Y. Chao
 
[1] Figure 1: Figure 1. Eukaryote
phylogeny integrating ultrastructure,
sequence trees, gene fusions and
molecular cladistic markers. The
unikont topology is established, but
the branching order of the six bikont
groups remains uncertain. The single
enslavement [12] of a red alga (R) to
create chromalveolates is supported by
a plastid glyceraldehyde phosphate
dehydrogenase (GAPDH) replacement [13].
Whether there was a single enslavement
of a green alga (G) to form cabozoa or
two separate enslavements (asterisks)
to form Cercozoa and Excavata is
uncertain [12], as is the position of
Heliozoa [14]. Polyubiquitin [15] and
EF-1α[16] insertions strongly support
the clades core Rhizaria and
opisthokonts. The inset shows the BamHI
restriction fragment from H.
cantabrigiensis that was sequenced and
analysed in this study, spanning the
DHFR and the amino terminus of the TS
gene (red, introns are green). The
length of the noncoding regions
upstream and downstream of the DHFR
gene from one of the clones is
indicated. Figure 1 from: Stechmann
A, Cavalier-Smith T, ''The root of the
eukaryote tree pinpointed.'', 2003,
Curr. Biol. 13, R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=MiamiCaptionURL&_method=retriev
e&_eid=1-s2.0-S096098220300602X&_image=1
-s2.0-S096098220300602X-gr1_lrg.jpg&_ba=
&_fmt=full&_orig=na&_issn=09609822&_pii=
S096098220300602X&_isHiQual=Y&_acct=C000
059600&_version=1&_urlVersion=0&_userid=
4422&md5=cec46b2161caca87740f4ff34545ab6
9


[2] cavalier-smith diagram COPYRIGHTED

source: cavalier_jmolevol_2003_56_540-56
3.pdf

1,520,000,000 YBN
18 19 20 21 22
202) The Protist Phylum Amoebozoa
evolves (amoebas and slime molds);10 11
the first feeding using pseudopods (a
temporary projection of the cytoplasm12
).13

The Amoebozoa include amoebas, both
naked and testate (partially enclosed
by a "test" or shell14 ), and slime
molds15 and are characterized by
pseudopods.16 Slime molds will diverge
into two main branches, plasmodial
slime molds and cellular slime molds.17

FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p515.
4. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
5. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p515.
7. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
8. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p515.
10. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
11. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
12. ^ "pseudopod." The American
Heritage� Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 29
May. 2013.
http://www.answers.com/topic/pseudopod
13. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p515.
14. ^
http://www.microscopy-uk.org.uk/mag/inde
xmag.html?http://www.microscopy-uk.org.u
k/mag/artjun03/gsamoebae.html

15. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p594-596.
16. ^ "protozoan". Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 09 Sep.
2012 <http://www.britannica.com/EBchecke
d/topic/480488/protozoan/32619/Annotated
-classification
>.
17. ^ Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p594-596.
18. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1520
mybn}
19. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {1400 my}
20.
^ S Blair Hedges, Jaime E Blair, Maria
L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1587mybn)
21. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (c1400) {c1220}
22. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{c1090}

MORE INFO
[1]
http://www.unige.ch/sciences/biologie/bi
ani/msg/Amoeboids/Amoebozoa/Conosea.html

 
[1] SUBPHYLUM Lobosa CLASS Amoebaea
Chaos diffluens, an amoeba. Photo
released by Dr. Ralf Wagner.
source: http://en.wikipedia.org/wiki/Ima
ge:Chaos_diffluens.jpg


[2] CLASS Amoebaea Mayorella (may-or
-ell-a) a medium sized free-living
naked amoeba with conical pseudopodia.
Central body is the nucleus. Phase
contrast. This picture was taken by
David Patterson of material from
Limulus-ridden sediments at Plum Island
(Massachusetts USA) in spring and
summer, 2001. NONCOMMERCIAL USE
source: http://microscope.mbl.edu/script
s/microscope.php?func=imgDetail&imageID=
515

1,520,000,000 YBN
5 6 7 8 9 10
203) Colonialism (where cells form a
colony3 ) evolves for the first time in
Eukaryotes.

Many cells that form colonies are
apparently identical but because each
cell is exposed to a different
environment, they transcribe different
genes.4

FOOTNOTES
1. ^ "colonial." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
Jun. 2012.
http://www.answers.com/topic/colonial
2. ^ "colonial." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
Jun. 2012.
http://www.answers.com/topic/colonial
3. ^ "colonial." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
Jun. 2012.
http://www.answers.com/topic/colonial
4. ^ Nicholas H. Barton, "Evolution",
2007,
p225-226. http://books.google.com/books
?id=mMDFQ32oMI8C&pg=PA225

5. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1080
mybn}
6. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1080
mybn}
7. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
{1956 mybn}
8. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1999 mybn}
9. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (1600mybn)
10. ^ Russell
F. Doolittle, Da-Fei Feng, Simon Tsang,
Glen Cho, Elizabeth Little,
"Determining Divergence Times of the
Major Kingdoms of Living Organisms with
a Protein Clock", Science, (1996).
(1800-1900 for eukaryote/prokaryote
separation)

MORE INFO
[1]
http://biology.kenyon.edu/Microbial_Bior
ealm/eukaryotes/euglenozoa/euglenozoa.ht
m

[2]
http://www.sirinet.net/~jgjohnso/apbio30
.html

 
[1] [t Note that this Chrysophytes
{golden algae} do not evolve
genetically until much later - but I
can't find colonial euglinas or
kinetoplasts- dinobryon look very
similar to euglenas however, even with
a red eyespot- which implies a close
relation.] [1] Dinobryon, a colony of
Chrysophytes showing flagella and red
eyespots UNKNOWN
source: http://www.microscopy-uk.org.uk/
mag//imagsmall/Dinobryonb.jpg


[2] [t Note that this CHrysophytes
{golden algae} do not evolve
genetically until much later - but I
can't find colonial euglinas or
kinetoplasts] [2] golden algae colony
(synura) Scanning EM showing the
colony of cells covered with scales By
Joel Mancuso UNKNOWN
source: http://farm1.staticflickr.com/38
/110623789_7d189c795b_b.jpg

1,500,000,000 YBN
10 11 12 13 14 15 16
15) The first "plastids" evolve.
Cyanobacteria form plastids through
endosymbiosis within a eukaryotic cell.
Like mitochondria, these organelles
copy themselves and are not made by the
cell DNA.6

Plastids provide the eukaryotic cell
with food from photosynthesis and gain
protection by living within the cell.7


This is a primary plastid endosymbiosis
and so these plastids are surrounded by
a double membrane.8 The inner wall of
the plastid being that of the
bacterium, the outer wall being that of
the eukoaryote.9

FOOTNOTES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
2. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
3. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
4. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
5. ^ Lee, R.E.
Phycology. Cambridge University Press,
2008,
p85. http://books.google.com/books?id=g
foIAFHgusgC&pg=PA85

6. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
7. ^ Lee, R.E.
Phycology. Cambridge University Press,
2008,
p85. http://books.google.com/books?id=g
foIAFHgusgC&pg=PA85

8. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
9. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004), p551.
10. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
11. ^ Ted Huntington.
12. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1300 mybn}
13. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {c1600 my}
14. ^ S. Blair Hedges,
"The Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).,
see comments {1576 MYBN}
15. ^ Knoll A,
Summons R, Waldbauer J, Zumberge J,
"The Geological Succession of Primary
Producers in the Oceans", in: Falkowski
P, Knoll A, editors. "Evolution of
primary producers in the sea.",
Elsevier; 2007, p152. {no later than)
1200 my}
16. ^ S. Blair Hedges, "The Origin
and Evolution of Model Organisms",
Nature Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002)., see
comments {1576 MYBN} {needs to be at
least as old as Euglenozoa since many
have plastids)1956} {Euglenozoa)1956}

MORE INFO
[1] "Plastid". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Plastid
[2] Butterfield N. J. A. H. Knoll K.
Swett, "A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

 
[1] Description Plagiomnium
affine, Laminazellen, Rostock Date
created 01.11.2006 Source
photographed by myself Author
Kristian Peters --
Fabelfroh Permission (Reusing this
file) GFDL
source: http://upload.wikimedia.org/wiki
pedia/commons/4/49/Plagiomnium_affine_la
minazellen.jpeg

1,500,000,000 YBN
43 44 45 46 47 48 49
86) The first plant (ancestor of all
green and red algae and land plants).32
33 34 35 36

This begins the plant kingdom. The
first plant is probably unicellular,
similar to the glaucophytes
{GlxKoFITS37 }.38 39 40 41 42

FOOTNOTES

1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
4. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
5. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

6. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
9. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
10. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

11. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
13. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
14. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
15. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

16. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

17. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
18. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
19. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
20. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

21. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

22. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
23. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
24. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
25. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

26. ^
http://howjsay.com/index.php?word=glauco
phytes&submit=Submit

27. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

28. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
29. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
30. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
31. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

32. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

33. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
34. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
35. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
36. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

37. ^
http://howjsay.com/index.php?word=glauco
phytes&submit=Submit

38. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

39. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
40. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
41. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
42. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

43. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (c1500)
44. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {first plastid) 1300mybn}
45. ^ Hackett JD,
Yoon HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{first plastid) c1600}
46. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1550 mybn}
47. ^ S Blair Hedges, Jaime
E Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2
(1609 mybn)
48. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
{1580} http://www.nature.com/nrg/journa
l/v3/n11/abs/nrg929.html

49. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf {fossil Grypania) 1874my}

MORE INFO
[1] Thomas Cavalier-Smith and Ema
E. -Y. Chao, "Phylogeny of Choanozoa,
Apusozoa, and Other Protozoa and Early
Eukaryote Megaevolution", Springer New
York,
(2003). file:///home/ted/ulsf/docs/cav-
smith_apusozoa_fulltext.html
 
[1] ? COPYRIGHTED
source: http://protist.i.hosei.ac.jp/PDB
3/PCD3711/htmls/86.html


[2] (See Image) COPYRIGHTED
source: Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (c1500)

1,500,000,000 YBN
9 10 11 12 13
220) The Protists Opisthokonts evolve
(the ancestor of all Fungi,
Choanoflagellates and Animals).7 8

FOOT
NOTES
1. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
2. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

3. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
4. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

5. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
6. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

7. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
8. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

9. ^ Ted Huntington.
10. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1380 mybn}
11. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1400mybn}
12. ^ S. Blair Hedges and Sudhir
Kumar, "The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1600 mybn}
13. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{960 mybn}
 
[1] Parasite spore, SEM Z115/0073
Rights Managed Credit: EYE OF
SCIENCE/SCIENCE PHOTO
LIBRARY Caption: Parasite spore.
Coloured scanning electron micrograph
(SEM) of a microsporidian (Tubulinosema
ratisbonensis) spore cultured on human
lung fibroblast cells (brown).
Microsporidia are single-celled
parasites. T. ratisbonenesis is a
parasite of the fruit fly (Drosophila
melanogaster), but may also be able to
infect humans with weakened immune
systems. The spore is the infective
phase of the life cycle. It is excreted
by the old host and enters the gut of a
new host. The contents of the spore,
the sporoplasm, is injected into the
host's cell via the polar tubule. Once
in the cell the organism divides many
times with the resultant organisms
producing more spores. Magnification:
x10,000 at 10 centimetres
wide. Release details: Model and
property releases are not available
UNKNOWN
source: http://www.sciencephoto.com/imag
e/365473/large/Z1150073-Parasite_spore,_
SEM-SPL.jpg


[2] Parasite spore, SEM Z115/0073
Rights Managed Credit: EYE OF
SCIENCE/SCIENCE PHOTO
LIBRARY Caption: Parasite spore.
Coloured scanning electron micrograph
(SEM) of a microsporidian (Tubulinosema
ratisbonensis) spore cultured on human
lung fibroblast cells (brown).
Microsporidia are single-celled
parasites. T. ratisbonenesis is a
parasite of the fruit fly (Drosophila
melanogaster), but may also be able to
infect humans with weakened immune
systems. The spore is the infective
phase of the life cycle. It is excreted
by the old host and enters the gut of a
new host. The contents of the spore,
the sporoplasm, is injected into the
host's cell via the polar tubule. Once
in the cell the organism divides many
times with the resultant organisms
producing more spores. Magnification:
x10,000 at 10 centimetres
wide. Release details: Model and
property releases are not available
UNKNOWN
source: http://www.sciencephoto.com/imag
e/365473/large/Z1150073-Parasite_spore,_
SEM-SPL.jpg

1,400,000,000 YBN
20 21 22 23 24 25 26
209) The earliest extant plant:
Glaucophyta {GlxKoFITu14 }.15 16 17

Glaucophytes are unicellular algae
found in freshwater.18

Glaucophyta probably branched off the
evolutionary tree before the divergence
of red and green algae from one
another.19

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=glauco
phytes&submit=Submit

2. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
3. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
4. ^ Hwan Su Yoon, Jeremiah D. Hackett,
Claudia Ciniglia, Gabriele Pinto and
Debashish, "A Molecular Timeline for
the Origin of Photosynthetic
Eukaryotes", Molecular Biology and
Evolution, (2004).
5. ^
http://howjsay.com/index.php?word=glauco
phytes&submit=Submit

6. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
8. ^ Hwan Su Yoon, Jeremiah D. Hackett,
Claudia Ciniglia, Gabriele Pinto and
Debashish, "A Molecular Timeline for
the Origin of Photosynthetic
Eukaryotes", Molecular Biology and
Evolution, (2004).
9. ^
http://howjsay.com/index.php?word=glauco
phytes&submit=Submit

10. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
11. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
12. ^ Hwan Su Yoon, Jeremiah D.
Hackett, Claudia Ciniglia, Gabriele
Pinto and Debashish, "A Molecular
Timeline for the Origin of
Photosynthetic Eukaryotes", Molecular
Biology and Evolution, (2004).
13. ^ Lee, R.E.
Phycology. Cambridge University Press,
2008,
p85. http://books.google.com/books?id=g
foIAFHgusgC&pg=PA85

14. ^
http://howjsay.com/index.php?word=glauco
phytes&submit=Submit

15. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
16. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
17. ^ Hwan Su Yoon, Jeremiah D.
Hackett, Claudia Ciniglia, Gabriele
Pinto and Debashish, "A Molecular
Timeline for the Origin of
Photosynthetic Eukaryotes", Molecular
Biology and Evolution, (2004).
18. ^ Lee, R.E.
Phycology. Cambridge University Press,
2008,
p85. http://books.google.com/books?id=g
foIAFHgusgC&pg=PA85

19. ^ Lee, R.E. Phycology. Cambridge
University Press, 2008,
p85. http://books.google.com/books?id=g
foIAFHgusgC&pg=PA85

20. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (c1400)
21. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119.
22. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1150
mybn}
23. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007. {c1290 mybn}
24. ^ S.
Blair Hedges and Sudhir Kumar, "The
TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1225 mybn}
25. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849 (2002); doi:10.1038/nrg929,
(2002). (c1500my)
26. ^ Hwan Su Yoon, Jeremiah D.
Hackett, Claudia Ciniglia, Gabriele
Pinto and Debashish, "A Molecular
Timeline for the Origin of
Photosynthetic Eukaryotes", Molecular
Biology and Evolution, (2004). (1558my)

MORE INFO
[1]
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P6064

 
[1] ? COPYRIGHTED
source: http://protist.i.hosei.ac.jp/PDB
3/PCD3711/htmls/86.html


[2] ? COPYRIGHTED
source: http://protist.i.hosei.ac.jp/PDB
/Images/Others/Glaucocystis/

1,300,000,000 YBN
29 30 31 32 33 34 35 36 37 38
188) The Plant Phylum Chlorophyta
{KlORoFiTu20 } evolves, Green Algae:
(ancestor of Volvox, Sea lettuce,
Spirogyra, and Stoneworts).21 22 23 24
25

The green algae are the most diverse
group of algae on Earth today in terms
of number of species (having at least
7000 species).26

The first land plants
most likely evolve from green algae.27
28

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
4. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
5. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

6. ^
http://howjsay.com/index.php?word=chloro
phyta&submit=Submit

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
9. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
10. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
11. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

12. ^
http://howjsay.com/index.php?word=chloro
phyta&submit=Submit

13. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
14. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
15. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
16. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
17. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

18. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
19. ^ Taylor, Taylor, Krings,
"Paleobotany: The Biology and Evolution
of Fossil Plants", 2009, p133-134.
20. ^
http://howjsay.com/index.php?word=chloro
phyta&submit=Submit

21. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
22. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
23. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
24. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
25. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

26. ^ Taylor, Taylor, Krings,
"Paleobotany: The Biology and Evolution
of Fossil Plants", 2009, p123.
27. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
28. ^ Taylor, Taylor, Krings,
"Paleobotany: The Biology and Evolution
of Fossil Plants", 2009, p133-134.
29. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1300mybn)
30. ^ "algae." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 18 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/14828/algae
>.
31. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1150
mybn}
32. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {1450mybn}
33. ^ S
Blair Hedges, Jaime E Blair, Maria L
Venturi and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). (968mybn)
34. ^ Daniel S. Heckman,1
David M. Geiser,2 Brooke R. Eidell,1
Rebecca L. Stauffer,1 Natalie L.
Kardos, "Molecular Evidence for the
Early Colonization of Land by Fungi and
Plants", Science 10 August 2001: Vol.
293. no. 5532, pp. 1129 - 1133 DOI:
10.1126/science.1061457, (2001).
(1061?)
35. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b (1650-800mybn)
36. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html
(1000my)
37. ^ Herman N,
"Organic World One Billion Years Ago",
Nauka, Leningrad, 1990.
38. ^ Knoll A,
Summons R, Waldbauer J, Zumberge J,
"The Geological Succession of Primary
Producers in the Oceans", in: Falkowski
P, Knoll A, editors. "Evolution of
primary producers in the sea.",
Elsevier; 2007, p150.
 
[1] Description Flagellar pit of
Pyramimonas sp. / from Nigaku-Ike of
University of Tsukuba, Tsukuba, Ibaraki
Pref., Japan / SEM:JEOL JSM-6330F /
scale bar = 1.0μm Date 2009-05-04
18:30 (UTC) Source
Pyramimonas_sp.jpg Author
Pyramimonas_sp.jpg: ja:User:NEON /
User:NEON_ja derivative work:
Addicted04 (talk) CC
source: http://upload.wikimedia.org/wiki
pedia/commons/c/cb/Pyramimonas_sp_color.
jpg


[2] Micrograph of Volvox aureus.
Copyright held by Dr. Ralf Wagner,
uploaded to German Wikipedia under
GFDL. Permission is granted to copy,
distribute and/or modify this document
under the terms of the GNU Free
Documentation License, Version 1.2 or
any later version published by the Free
Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no
Back-Cover Texts. Subject to
disclaimers.
source: http://en.wikipedia.org/wiki/Vol
vox

1,300,000,000 YBN
14 15 16 17
219) The plant Phylum Rhodophyta
{rODOFITu10 } evolves (Red Algae).11 12


Rhodophyta are common and widespread,
unicellular and multicellular algae
(reaching up to 1 m {or 3 feet} in
length), and are mostly free-living but
some are parasitic or symbiotic.13

FOOT
NOTES
1. ^
http://howjsay.com/index.php?word=rhodop
hyta&submit=Submit

2. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
4. ^
http://howjsay.com/index.php?word=rhodop
hyta&submit=Submit

5. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
6. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
7. ^
http://howjsay.com/index.php?word=rhodop
hyta&submit=Submit

8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
9. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
10. ^
http://howjsay.com/index.php?word=rhodop
hyta&submit=Submit

11. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
12. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
13. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P9565

14. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1300mybn)
15. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1450 mybn}
16. ^ S Blair Hedges, Jaime
E Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1428mybn)
17. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.

MORE INFO
[1]
http://www.sirinet.net/~jgjohnso/apbio30
.html

 
[1] Close-up of a red alga (Genus?
Laurencia), Class Florideophyceae,
Order=? a marine seaweed from Hawaii.
GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Laurencia.jpg


[2] Bangia atropurpurea Profile:
unbranched filaments in tufts. Often
forming dense fringes in the spalsh
zone. Uniseriate at base, multiseriate
above with protoplasts separate in a
firm gelatinous sheath. Stellate
chloroplasts. US NOAA PD
source: http://www.glerl.noaa.gov/seagra
nt/GLWL/Algae/Rhodophyta/Cards/Bangia.ht
ml

1,300,000,000 YBN
24 25 26 27 28 29 30
323) The Protists Excavates evolve: the
ancestor of the Parabasalids
{PaRu-BAS-a-liDS17 }, and the
Diplomonads {DiP-lO-mO-naDZ18 } {which
includes Giardia {JE-oR-DE-u19 }).20 21
22

Most of these species have an excavated
ventral feeding groove, and all lack
mitochondria which are thought to be
lost secondarily.23

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

2. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
5. ^
http://howjsay.com/index.php?word=paraba
salid&submit=Submit

6. ^
http://howjsay.com/index.php?word=diplom
onads&submit=Submit

7. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
10. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
11. ^
http://howjsay.com/index.php?word=paraba
salid&submit=Submit

12. ^
http://howjsay.com/index.php?word=diplom
onads&submit=Submit

13. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

14. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
16. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
17. ^
http://howjsay.com/index.php?word=paraba
salid&submit=Submit

18. ^
http://howjsay.com/index.php?word=diplom
onads&submit=Submit

19. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

20. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

21. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
22. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
23. ^ Jan
Tachezy, "Hydrogenosomes and mitosomes:
mitochondria of anaerobic eukaryotes",
2008 http://books.google.com/books?id=L
sPkO1fMPvQC&pg=PA273

24. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1300
mybn}
25. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {2000 my}
26.
^ S Blair Hedges, Jaime E Blair, Maria
L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
{2291} {2291 my}
27. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004). {1600}
{1600 my}
28. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
{2230} {2230 my}
29. ^ S. Blair Hedges and
Sudhir Kumar, "The TimeTree of Life",
2009,
p117-118. http://www.timetree.org/book.
php
{1594 my}
30. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{1030 mybn}

MORE INFO
[1] "Heterokonts". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Heterokonts

[2] http://sn2000.taxonomy.nl/
 
[1] A timescale of eukaryote evolution.
The times for each node are taken from
the summary times in Table 1, except
for nodes 1 (310 Ma), 2 (360 Ma), 3
(450 Ma), and 4 (520 Ma), which are
from the fossil record [25]; nodes 8
(1450 Ma) and 16 (1587 Ma) are
phylogenetically constrained and are
the midpoints between adjacent nodes.
Nodes 12–14 were similar in time and
therefore shown as a multifurcation at
1000 Ma; likewise, nodes 21–22 are
shown as a multifurcation at 1967 Ma.
The star indicates the occurrence of
red algae in the fossil record at 1200
Ma, the oldest taxonomically
identifiable eukaryote [12]. Hedges
et al. BMC Evolutionary Biology 2004
4:2
doi:10.1186/1471-2148-4-2 COPYRIGHTED
source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-2-2.jpg


[2] Giardia lamblia, a parasitic
flagellate that causes giardiasis.
Image from public domain source at
http://www.nigms.nih.gov/news/releases/i
mages/para.jpg
source: http://www.nigms.nih.gov/news/re
leases/images/para.jpg

1,280,000,000 YBN
15 16 17 18 19 20
38) (Filamentous) multicellularity in
Eukaryotes evolves.10 11

In this organism, unlike single cell
eukaryotes, cells stay fastened
together after cell division.

Multicellularity seems to have arisen
multiple times independently in
eukaryotes: in fungi, animals, slime
molds, and algae.12 13

FOOTNOTES
1. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
2. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
3. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
4. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
5. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
6. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
7. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
8. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
9. ^ Nicholas H. Barton, "Evolution",
2007,
p225-226. http://books.google.com/books
?id=mMDFQ32oMI8C&pg=PA225

10. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
11. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
12. ^ Knoll, Andrew H. “The Multiple
Origins of Complex Multicellularity.”
Annu. Rev. Earth Planet. Sci. 39.1
(2011):
217-239. http://www.annualreviews.org/d
oi/abs/10.1146/annurev.earth.031208.1002
09

13. ^ Inaki Ruiz-Trillo, Gertraud
Burger, Peter W.H. Holland, Nicole
King, B. Franz Lang, Andrew J. Roger,
Michael W. Gray, The origins of
multicellularity: a multi-taxon genome
initiative, Trends in Genetics, Volume
23, Issue 3, March 2007, Pages 113-118,
ISSN 0168-9525, DOI:
10.1016/j.tig.2007.01.005. (http://www.
sciencedirect.com/science/article/pii/S0
168952507000236)

14. ^ Butterfield N. J. A. H. Knoll K.
Swett, "A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

15. ^ Ted Huntington.
16. ^ Butterfield N. J. A. H.
Knoll K. Swett, "A bangiophyte red alga
from the Proterozoic of Arctic
Canada.", Science 1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905
{Bangia) 1250 mybn}
17. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
18. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012. {1874
mybn} {Grypania)1874 mybn}
19. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf {1874 mybn} {Grypania)1874
mybn}
20. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2009, p517.

MORE INFO
[1] Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
(c850my)
[2] S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1351my)
[3] Ted huntington, Estimate based on
origin of brown algae around
1,973,000,000
(earlest red alga fossils:) (Hunting
Formation) Somerset Island, arctic
Canada14  

[1] Bodanella (bow-dan-ell-a)
lauterbornii, a branching filamentous
brown alga. Nearly all brown algae are
marine organisms, but this species is
found in the bottoms of freshwater
lakes. Bright field. data on this
strain. This image is of material
from Provasoli-Guillard National Center
for Culture of Marine Phytoplankton,
images taken by David Patterson and Bob
Andersen. Image copyright: Bob Andersen
and D. J. Patterson, image used under
license to MBL
(micro*scope). NONCOMMERCIAL USE ONLY
source: http://starcentral.mbl.edu/msr/r
awdata/files/bodonella_bgz.zip


[2] Bodanella (bow-dan-ell-a)
lauterbornii, a branching filamentous
brown alga. Nearly all brown algae are
marine organisms, but this species is
found in the bottoms of freshwater
lakes. Bright field. data on this
strain. This image is of material
from Provasoli-Guillard National Center
for Culture of Marine Phytoplankton,
images taken by David Patterson and Bob
Andersen. Image copyright: Bob Andersen
and D. J. Patterson, image used under
license to MBL
(micro*scope). NONCOMMERCIAL USE ONLY
source: http://starcentral.mbl.edu/msr/r
awdata/viewable/bodonella_bgw.jpg

1,280,000,000 YBN
5 6 7
85) Differentiation in a multicellular
eukaryote evolves. In addition to
gamete (or spore) cells, there are
somatic cells. Unlike gamete cells,
somatic cells are asexual
(non-fusing).2

All cells of an organism are somatic
cells, except the sperm and egg cells,
the cells from which they arise
(gametocytes), and undifferentiated
stem cells.3

Cell differentiation is how cells in a
multicellular organism become
specialized to perform specific
functions in a variety of tissues and
organs.4

FOOTNOTES
1. ^ "cell differentiation."
McGraw-Hill Encyclopedia of Science and
Technology. The McGraw-Hill Companies,
Inc., 2005. Answers.com 25 Mar. 2012.
http://www.answers.com/topic/cell-differ
entiation

2. ^ Ted Huntington.
3. ^
http://www.biology-online.org/dictionary
/Somatic_cells

4. ^ "cell differentiation."
McGraw-Hill Encyclopedia of Science and
Technology. The McGraw-Hill Companies,
Inc., 2005. Answers.com 25 Mar. 2012.
http://www.answers.com/topic/cell-differ
entiation

5. ^ Ted Huntington.
6. ^ Butterfield N. J. A. H.
Knoll K. Swett, "A bangiophyte red alga
from the Proterozoic of Arctic
Canada.", Science 1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905
{Bangia) 1250 mybn}
7. ^ Butterfield
N. J. A. H. Knoll K. Swett, "A
bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905
{Bangia) 1250 mybn}
 
[1] Volvoxcell differentiation. The
pathways leading to germ cells or
somatic cells are controlled by genes
that cause cells to follow one or the
other fate. Mutations can prevent the
formation of one of these lineages.
http://www.devbio.com/chap02/link0204.sh
tml Although all the volvocaceans,
like their unicellular relative
Chlamydomonas, reproduce predominantly
by asexual means, they are also capable
of sexual reproduction, which involves
the production and fusion of haploid
gametes. In many species of
Chlamydomonas, including the one
illustrated in Figure 2.10, sexual
reproduction is isogamous (“the same
gametes”), since the haploid gametes
that meet are similar in size,
structure, and motility. However, in
other species of Chlamydomonas—as
well as many species of colonial
volvocaceans—swimming gametes of very
different sizes are produced by the
different mating types. This pattern is
called heterogamy (“different
gametes”). But the larger
volvocaceans have evolved a specialized
form of heterogamy, called oogamy,
which involves the production of large,
relatively immotile eggs by one mating
type and small, motile sperm by the
other (see Sidelights and
Speculations) UNKNOWN
source: http://www.ncbi.nlm.nih.gov/book
s/NBK10031/bin/ch2f12.jpg


[2] Description English: Four
Different Species of Volvocales Algae.
(A) Gonium pectorale, (B) Eudorina
elegans, (C) Pleodorina californica,
and (D) Volvox carteri. These are
unicellular organisms that live in
colonies and have both large and small
gametes. Date Published: June 15,
2004 Source Whitfield J:
Everything You Always Wanted to Know
about Sexes. PLoS Biol 2/6/2004: e183.
http://dx.doi.org/10.1371/journal.pbio.0
020183 Author Photo courtesy of
Aurora M. Nedelcu, from the Volvocales
Information Project
(http://www.unbf.ca/vip/index.htm). Per
mission (Reusing this file) See
below. CC
source: http://upload.wikimedia.org/wiki
pedia/commons/c/c5/Volvocales.png

1,280,000,000 YBN
1 2 3
210) Mitosis of diploid cells evolves.
FOOTNOTES

1. ^ Ted Huntington.
2. ^ Butterfield N. J. A. H.
Knoll K. Swett, "A bangiophyte red alga
from the Proterozoic of Arctic
Canada.", Science 1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

3. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -80mybn
guess}
 
[1] Mitosis divides genetic information
during cell division Source:
http://www.ncbi.nlm.nih.gov/About/primer
/genetics_cell.html This image is
from the Science Primer, a work of the
National Center for Biotechnology
Information, part of the National
Institutes of Health. As a work of the
U.S. federal government, the image is
in the public domain.
source: http://en.wikipedia.org/wiki/Mit
osis


[2] Prophase: The two round objects
above the nucleus are the centrosomes.
Note the condensed chromatin. from
Gray's Anatomy. Unless stated
otherwise, it is from the online
edition of the 20th U.S. edition of
Gray's Anatomy of the Human Body,
originally published in 1918. Online
editions can be found on Bartleby and
also on Yahoo!
source: UNKNOWN

1,280,000,000 YBN
7 8 9
301) The haplodiplontic life cycle
evolves in algae (mitosis occurs in
both haploid and diploid life stages).4


This is also known as the "alternation
of generations".5

Some algae and
plants have a haplodiplontic life
cycle; a life cycle where both diploid
and haploid stages are multicellular.
The multicellular haploid stage is
called the gametophyte and the
multicellular diploid stage is called
the sporophyte.6

FOOTNOTES
1. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
2. ^ John Ringo,
"Fundamental Genetics", 2004, p201.
3. ^ John
Ringo, "Fundamental Genetics", 2004,
p201.
4. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
5. ^ John Ringo,
"Fundamental Genetics", 2004, p201.
6. ^
Campbell, N.A., and J.B. Reece.
Biology. Pearson Benjamin Cummings,
2008. Alternative eText Formats Series,
p252.
7. ^ Ted Huntington.
8. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
9. ^ Butterfield N. J.
A. H. Knoll K. Swett, "A bangiophyte
red alga from the Proterozoic of Arctic
Canada.", Science 1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905


MORE INFO
[1] Mark Kirkpatrick, "The
evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

 
[1] Drawn by self for Biological life
cycle Based on Freeman & Worth's
Biology of Plants (p. 171). GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Sporic_meiosis.png


[2] Drawn by self for Biological life
cycle Based on Freeman & Worth's
Biology of Plants (p. 171). GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Sporic_meiosis.png

1,274,000,000 YBN
15 16
187) A captured red alga, through
endosymbiosis, becomes a plastid in the
ancestor of all chromalveolates.11 12
13

This is a secondary plastid
endosymbiosis, where an algae cell is
captured instead of a cyanobacterium
which results in a plastid with more
than two membranes.14

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

5. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
6. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
7. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
8. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

9. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
10. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
11. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
12. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

13. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
14. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
15. ^
Yoon, Hwan Su et al. “A Molecular
Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{1274 mybn}
16. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). {1280mybn}
 
[1] Fig. 2. The tree of life based
on molecular, ultrastructural and
palaeontological evidence. Contrary to
widespread assumptions, the root is
among the eubacteria, probably within
the double-enveloped Negibacteria, not
between eubacteria and archaebacteria
(Cavalier-Smith, 2002b); it may lie
between Eobacteria and other
Negibacteria (Cavalier-Smith, 2002b).
The position of the eukaryotic root has
been nearly as controversial, but is
less hard to establish: it probably
lies between unikonts and bikonts (Lang
et al., 2002; Stechmann and
Cavalier-Smith, 2002, 2003). For
clarity the basal eukaryotic kingdom
Protozoa is not labelled; it comprises
four major groups (alveolates, cabozoa,
Amoebozoa and Choanozoa) plus the small
bikont phylum Apusozoa of unclear
precise position; whether Heliozoa are
protozoa as shown or chromists is
uncertain (Cavalier-Smith, 2003b).
Symbiogenetic cell enslavement occurred
four or five times: in the origin of
mitochondria and chloroplasts from
different negibacteria, of
chromalveolates by the enslaving of a
red alga (Cavalier-Smith, 1999, 2003;
Harper and Keeling, 2003) and in the
origin of the green plastids of
euglenoid (excavate) and chlorarachnean
(cercozoan) algae—a green algal cell
was enslaved either by the ancestral
cabozoan (arrow) or (less likely) twice
independently within excavates and
Cercozoa (asterisks) (Cavalier-Smith,
2003a). The upper thumbnail sketch
shows membrane topology in the
chimaeric cryptophytes (class
Cryptophyceae of the phylum Cryptista);
in the ancestral chromist the former
food vacuole membrane fused with the
rough endoplasmic reticulum placing the
enslaved cell within its lumen (red) to
yield the complex membrane topology
shown. The large host nucleus and the
tiny nucleomorph are shown in blue,
chloroplast green and mitochondrion
purple. In chlorarachneans (class
Chlorarachnea of phylum Cercozoa) the
former food vacuole membrane remained
topologically distinct from the ER to
become an epiplastid membrane and so
did not acquire ribosomes on its
surface, but their membrane topology is
otherwise similar to the cryptophytes.
The other sketches portray the four
major kinds of cell in the living world
and their membrane topology. The upper
ones show the contrasting ancestral
microtubular cytoskeleton (ciliary
roots, in red) of unikonts (a cone of
single microtubules attaching the
single centriole to the nucleus, blue)
and bikonts (two bands of microtubules
attached to the posterior centriole and
an anterior fan of microtubules
attached to the anterior centriole).
The lower ones show the single plasma
membrane of unibacteria (posibacteria
plus archaebacteria), which were
ancestral to eukaryotes and the double
envelope of negibacteria, which were
ancestral to mitochondria and
chloroplasts (which retained the outer
membrane, red). COPYRIGHTED
source: http://aob.oxfordjournals.org/co
ntent/95/1/147/F2.large.jpg


[2] Figure 3: Fig. 3. Schematic
representation of the evolutionary
relationships and divergence times for
the red, green, glaucophyte, and
chromist algae. These photosynthetic
groups are outgroup-rooted with the
Opisthokonta which putatively
ancestrally lacked a plastid. The
branches on which the cyanobacterial
(CB) primary and red algal chromist
secondary endosymbioses occurred are
shown Figure 3 from: Yoon, Hwan Su
et al. “A Molecular Timeline for the
Origin of Photosynthetic Eukaryotes.”
Molecular Biology and Evolution 21.5
(2004): 809 -818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract COPYRIGHTED
source: http://mbe.oxfordjournals.org/co
ntent/21/5/809/F3.large.jpg

1,250,000,000 YBN
29 30 31 32 33 34
88) The Protists "Chromalveolates"
{KrOM-aL-VEO-leTS22 } evolve (the
ancestor of the Chromista
{Cryptophytes, Haptophytes, and
Stramenopiles {STro-meN-o-Pi-lEZ23 }}
and Alveolates {aL-VEO-leTS24 }).25 26
27 28

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

2. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

3. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

4. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2

5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004),p540.
6. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

7. ^ Baldauf, S. L. “The Deep Roots
of Eukaryotes.” Science 300.5626
(2003) : 1703
-1706. http://www.sciencemag.org/conten
t/300/5626/1703.short

8. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

9. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

10. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

11. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2

12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004),p540.
13. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

14. ^ Baldauf, S. L. “The Deep Roots
of Eukaryotes.” Science 300.5626
(2003) : 1703
-1706. http://www.sciencemag.org/conten
t/300/5626/1703.short

15. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

16. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

17. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

18. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2

19. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004),p540.
20. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

21. ^ Baldauf, S. L. “The Deep Roots
of Eukaryotes.” Science 300.5626
(2003) : 1703
-1706. http://www.sciencemag.org/conten
t/300/5626/1703.short

22. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

23. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

24. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

25. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2

26. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004),p540.
27. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

28. ^ Baldauf, S. L. “The Deep Roots
of Eukaryotes.” Science 300.5626
(2003) : 1703
-1706. http://www.sciencemag.org/conten
t/300/5626/1703.short

29. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{c1250 mybn}
30. ^
Hackett JD, Yoon HS, Butterfield NJ,
Sanderson MJ, Bhattacharya D, "Plastid
endosymbiosis: Sources and timing of
the major events.", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1300 mybn}
31. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1665 mybn}
32. ^ S Blair Hedges, Jaime
E Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2
(1973mybn)
33. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)
34. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1600mybn}

MORE INFO
[1] "Brown alga". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Brown_alga
[2] Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). http://www.sciencemag.org/conte
nt/290/5493/972.full
has heterkonts
before ciliophora and apicomplexa
branch
 
[1] S. Blair Hedges and Sudhir Kumar,
''The TimeTree of Life'', 2009,
p117-118. http://www.timetree.org/book.
php COPYRIGHTED
source: http://www.timetree.org/book.php


[2] Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
''Plastid endosymbiosis: Sources and
timing of the major events.'', in:
Falkowski P, Knoll A, editors.
''Evolution of primary producers in the
sea.'', Elsevier; 2007, p120.
COPYRIGHTED
source: Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120.

1,250,000,000 YBN
18
201) The earliest certain eukaryote
fossils and earliest certain fossils of
eukaryote filamentous multicellularity:
a bangiophyte {BoNJEuFIT10 } red alga
fossil.11 12 13

These are also the earliest fossils of
a eukaryote that can reproduce sexually
and that have differentiated cells (a
basal holdfast).14 15

FOOTNOTES
1. ^ Butterfield N. J. A. H. Knoll K.
Swett, "A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

2. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

3. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
4. ^ Butterfield
N. J. A. H. Knoll K. Swett, "A
bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

5. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

6. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
7. ^ Butterfield
N. J. A. H. Knoll K. Swett, "A
bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

8. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

9. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
10. ^
http://howjsay.com/index.php?word=bangio
phyte&submit=Submit

11. ^ Butterfield N. J. A. H. Knoll K.
Swett, "A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

12. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

13. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
14. ^ Nicholas
J. Butterfield, "Bangiomorpha pubescens
n. gen., n. sp.: implications for
the evolution of sex,
multicellularity, and the
Mesoproterozoic/ Neoproterozoic
radiation of eukaryotes", Paleobiology,
26(3), 2000, pp.
386–404. http://www.algaebase.org/pdf
/AC100CF316a8734043nPXq2B4E75/386.pdf

15. ^
http://nas.er.usgs.gov/queries/factsheet
.aspx?SpeciesID=1700

16. ^ Science 1990 vol 250 Butterfield
N. J. A. H. Knoll K. Swett 1990 A
bangiophyte red alga from the
Proterozoic of Arctic Canada. Science
250: 104-107
http://www.jstor.org/stable/2877905
17. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

18. ^ Science 1990 vol 250 Butterfield
N. J. A. H. Knoll K. Swett 1990 A
bangiophyte red alga from the
Proterozoic of Arctic Canada. Science
250: 104-107
http://www.jstor.org/stable/2877905
{1250 mybn}
(Hunting Formation) Somerset Island,
arctic Canada16 17  

[1] Figure 4 from: Science 1990 vol
250 Butterfield N. J. A. H. Knoll K.
Swett 1990 A bangiophyte red alga from
the Proterozoic of Arctic Canada.
Science 250: 104-107
http://www.jstor.org/stable/2877905
COPYRIGHTED
source: http://www.jstor.org/stable/2877
905


[2] Figure 2 from: Science 1990 vol
250 Butterfield N. J. A. H. Knoll K.
Swett 1990 A bangiophyte red alga from
the Proterozoic of Arctic Canada.
Science 250: 104-107
http://www.jstor.org/stable/2877905
COPYRIGHTED
source: http://www.jstor.org/stable/2877
905

1,200,000,000 YBN
21 22 23 24
221) The first fungi. This begins the
Fungi Kingdom.14 15

Like animals, fungi are heterotrophic
(unable to build structural materials
by photosynthesis) and so must feed on
other living things.16

Fungi live on organic material and are
therefore generally parasitic (live or
feed on another organism to the
detriment of the host organism17 ) or
are saprophytic (live on dead or
decaying organic matter18 ). Some types
of fungi, however, form symbioses with
plants.19

Fungi may reproduce sexually or
asexually and like plants show
alternations in their life cycle.20

FOO
TNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

{Hedges_Venturi_Shoe_20031110.pdf}
2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
5. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
10. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
11. ^ "parasitic." Encyclopedia of Food
and Culture. The Gale Group, Inc, 2003.
Answers.com 27 Dec. 2012.
http://www.answers.com/topic/parasitic
12. ^ "saprophytic." Grzimek's Animal
Life Encyclopedia. The Gale Group, Inc,
2005. Answers.com 27 Dec. 2012.
http://www.answers.com/topic/saprophytic
-zoology

13. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
14. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
16. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
17. ^ "parasitic." Encyclopedia of Food
and Culture. The Gale Group, Inc, 2003.
Answers.com 27 Dec. 2012.
http://www.answers.com/topic/parasitic
18. ^ "saprophytic." Grzimek's Animal
Life Encyclopedia. The Gale Group, Inc,
2005. Answers.com 27 Dec. 2012.
http://www.answers.com/topic/saprophytic
-zoology

19. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
20. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
21. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007. {c1200 mybn}
22. ^ S.
Blair Hedges and Sudhir Kumar, "The
TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1368 mybn}
23. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2
(1513mybn) {1513 mybn}
24. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (c1200) {c1100} {c1100 mybn}
 
[1] Microsporidia. Image from Sterling
Parasitology Microsporidia
Research. UNKNOWN
source: http://microbewiki.kenyon.edu/im
ages/3/37/Micro2.jpg


[2] Penicillium [t Note: Penecillium
is a multicellular fungi.] UNKNOWN
source: http://www.mold-help.org/pages/i
mages/Penicillium.jpg

1,180,000,000 YBN
24 25 26 27 28 29 30
6280) The Protists Alveolates
{aL-VEO-leTS16 } (the ancestor of all
Ciliates, Apicomplexans, and
Dinoflagellates {DInOFlaJeleTS17 }).18
19 20

These three protist phyla all have an
alveolar {aL-VE-e-lR21 } membrane
system, made of flattened
membrane-bound sacs called "alveoli"
{aL-VE-e-lI22 }.23

FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

2. ^ "dinoflagellate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

3. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004).http://www.biomedcentral.com/1471
-2148/4/2
{Hedges_Venturi_Shoe_20031110
.pdf}
4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
5. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p135.
6. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

7. ^ "dinoflagellate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
10. ^ Brusca and
Brusca, "Invertebrates", Second
Edition, 2003, p135.
11. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

12. ^ "dinoflagellate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

13. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
14. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
15. ^ Brusca and
Brusca, "Invertebrates", Second
Edition, 2003, p135.
16. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

17. ^ "dinoflagellate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

18. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
19. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
20. ^ Brusca and
Brusca, "Invertebrates", Second
Edition, 2003, p135.
21. ^ "alveolar." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 03 Jun. 2013.
http://www.answers.com/topic/alveolar
22. ^ "alveolus." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Jun. 2013.
http://www.answers.com/topic/alveolus
23. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p135.
24. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1180
mybn}
25. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {1480 my}
26.
^ S Blair Hedges, Jaime E Blair, Maria
L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf} {1956 my}
27. ^ S. Blair Hedges and
Sudhir Kumar, "The TimeTree of Life",
2009,
p117-118. http://www.timetree.org/book.
php
{1345 my}
28. ^ Emmanuelle J. Javaux,
Andrew H. Knoll and Malcolm Walter,
"Recognizing and Interpreting the
Fossils of Early Eukaryotes", Origins
of Life and Evolution of Biospheres,
Volume 33, Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{1000 my}
29. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{c820 my}
30. ^ S. Blair
Hedges and Sudhir Kumar, "The TimeTree
of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1628}
 
[1]
Unknown http://www.genome.gov/Images/pr
ess_photos/highres/85-300.jpg PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/6/6e/Oxytricha_trifa
llax.jpg/1024px-Oxytricha_trifallax.jpg


[2] Description English: Unknown
species of cilliate in the last stages
of mitosis (cytokinesis), with cleavage
furrow visible. Date Source
Own work Author
TheAlphaWolf CC
source: http://upload.wikimedia.org/wiki
pedia/commons/5/55/Unk.cilliate.jpg

1,100,000,000 YBN
14 15
75) The oldest extant fungi phylum
"Microsporidia" evolves.9 10

Microsporidia are obligate (survive
only as11 ) intracellular parasites of
eukaryotes;12 commonly infecting
insects, crustaceans, and fishes.13

FOO
TNOTES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
4. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
5. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
6. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
7. ^ "obligate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 25
Mar. 2012.
http://www.answers.com/topic/obligate
8. ^ Murray Wittner, Louis M. Weiss,
"The microsporidia and
microsporidiosis", 1999,
p2. http://books.google.com/books?ei=Sq
NvT_O5JKbTiAKf8PDuAg

9. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
10. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
11. ^ "obligate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 25
Mar. 2012.
http://www.answers.com/topic/obligate
12. ^ Murray Wittner, Louis M. Weiss,
"The microsporidia and
microsporidiosis", 1999,
p2. http://books.google.com/books?ei=Sq
NvT_O5JKbTiAKf8PDuAg

13. ^ Kirk, et al., "Dictionary of
Fungi", 2008,
p427. {Fungi_Dictionary_Of_2008.pdf}
14. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849 (2002);
doi:10.1038/nrg929, (2002). (>1460mybn)
15. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (c1100mybn)

MORE INFO
[1]
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=93911

[2] Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). http://www.sciencemag.org/conte
nt/290/5493/972.full

 
[1] Sporoblast of the Microsporidium
Fibrillanosema crangonycis. Electron
micrograph taken by Leon White. GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Fibrillanosema_spore.jpg


[2] Spironema
multiciliatum Spironema:
Octosporoblastic sporogony producing
horseshoe-shaped monokaryotic spores in
sporophorous vesicles; monomorphic,
diplokaryotic and monokaryotic;
merogony - last generation merozoites
are diplokaryotic; sporogony - initial
division of the sporont nuclei is
meiotic as indicated by the occurrence
of synaptonemal complexes; spores are
horse-shoe-shaped, with swollen ends in
T. variabilis and have one elongate
nucleus; exospore with three layers,
endospore is of medium thickness;
polaroplast composed of two lamellar
parts, an anterior part of closely
packed lamellae and a posterior part of
wider compartments; polar tube is
isofilar and forms, in the posterior
quarter of the spore, 3-4 coils in a
single rank (T. variabilis) or 8-10
coils in a single rank (T. chironomi);
type species Toxoglugea vibrio in
adipose tissue of larvae of Ceratopogon
sp. (Diptera, Ceratopogonidae).
Spironema (spire-oh-knee-ma)
multiciliatum Klebs, 1893. Cells are
lanceolate, relatively flattened and
flexible. The cells have a spiral
groove, long kinetics and a tail, which
tapers posteriorly, and are about 15 -
21 microns without the tail. The
nucleus is located anteriorly or near
the centre of the cell. When the cells
are squashed, the cells are more
flexible. Food materials are seen under
the cell surface. Rarely observed.
This picture was taken by Won Je Lee
using conventional photographic film
using a Zeiss Axiophot microscope of
material collected in marine sediments
of Botany Bay (Sydney, Australia). The
image description refers to material
from Botany Bay. NONCOMMERCIAL USE
source: http://microscope.mbl.edu/script
s/microscope.php?func=imgDetail&imageID=
3928

1,100,000,000 YBN
18 19 20 21 22
313) The Protist Phylum
"Dinoflagellata" evolves.13 14 15

Dinoflagellates {DI-nO-Fla-Je-leTS16 }
are single-celled, aquatic organisms
that have two dissimilar flagella. Most
are microscopic and marine. An
important link in the food chain,
Dinoflagellates also "bloom" which can
produce luminescence seen in the sea.17

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
4. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
5. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
8. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
9. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

10. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
11. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
12. ^ S
Blair Hedges, Jaime E Blair, Maria L
Venturi and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
13. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
14. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
15. ^ S
Blair Hedges, Jaime E Blair, Maria L
Venturi and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
16. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

17. ^ "dinoflagellate." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 26 Mar. 2012.
http://www.answers.com/topic/dinoflagell
ate

18. ^ Emmanuelle J. Javaux, Andrew H.
Knoll and Malcolm Walter, "Recognizing
and Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{Dinosterane molecular
fossils)1100 my}
19. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{DNA)1040 mybn}
20. ^ A. H. Knoll, E. J.
Javaux, D. Hewitt and P. Cohen,
"Eukaryotic Organisms in Proterozoic
Oceans", Philosophical Transactions:
Biological Sciences , Vol. 361, No.
1470, Major Steps in Cell Evolution:
Palaeontological, Molecular and
Cellular Evidence of Their Timing and
Global Effects (Jun. 29, 2006), pp.
1023-1038 http://www.jstor.org/stable/2
0209698
{1.8 bybn} {Dinosterane
molecular fossils)1100 my}
21. ^ S. Blair
Hedges and Sudhir Kumar, "The TimeTree
of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{940 mybn}
22. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{430 my}

MORE INFO
[1] Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (1973mybn)
[2] Sandra L.
Baldauf, A. J. Roger, I. Wenk-Siefert,
W. F. Doolittle, "A Kingdom-Level
Phylogeny of Eukaryotes Based on
Combined Protein Data", Science, Vol
290, num 5493, p 972, (2000). has
heterkonts before ciliophora and
apicomplexa branch (1600mybn)
[3] Pratt, L. M.,
Summons, R. E. and Hieshima, G. B.:
1991, Sterane and Triterpane Biomarkers
in the Precambrian Nonesuch Formation,
North American Midcontinent Rift,
Geochem. Cosmochim. Acta 55, 911–916
[4] J.J.
Brocks, R.E. Summons, 8.03 -
Sedimentary Hydrocarbons, Biomarkers
for Early Life, In: Editors-in-Chief:
Heinrich D. Holland and Karl K.
Turekian, Editor(s)-in-Chief, Treatise
on Geochemistry, Pergamon, Oxford,
2003, Pages 63-115, ISBN 9780080437514,
10.1016/B0-08-043751-6/08127-5. (http:/
/www.sciencedirect.com/science/article/p
ii/B0080437516081275)

[5] Moldowan, J. Michael et al.
“Chemostratigraphic reconstruction of
biofacies: Molecular evidence linking
cyst-forming dinoflagellates with
pre-Triassic ancestors.” Geology 24.2
(1996): 159 -162.
http://geology.geoscienceworld.org/con
tent/24/2/159.abstract

AND http://geology.gsapubs.org/content/
24/2/159.full.pdf
[6] Raven, Evert, Eichhorn, "Biology of
Plants", (New York: Worth Publishers,
1992). p98-99
[7] "coenocyte." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 23
Dec. 2011.
http://www.answers.com/topic/coenocyte
 
[1] Dinoflagellate Ceratium
sp. Phylum Dinoflagellata Upper
Newport Bay, Orange County, CA.
9/22/12. © Peter J.
Bryant COPYRIGHTED
source: http://nathistoc.bio.uci.edu/Din
oflagellates/DSC_6886b.jpg


[2] Model of Pyrodinium bahamense, a
dinoflagellate species, in the American
Museum of Natural History Credit:
Life’s Little Mysteries Fire
water Have you ever seen glowing ocean
water, like the bright blue surf
pictured in the intro slide? The neon
water is brimming with dinoflagellates,
single-celled plankton with tails that
slosh around together in vast numbers.
These creatures have been highlighting
Earth’s coastlines for 1.2 billion
years, and for the past few millennia,
they’ve puzzled humans, who used to
attribute the glow of some ocean water
to magic or the gods.Dinoflagellates
still puzzle us; we know how they glow,
but not why. They might have evolved
bioluminescence as a way of frightening
predators, or to reveal those
predators’ locations by flashing when
touched. Alternatively, their
bioluminescence may just be a fancy way
of ridding themselves of oxygen
radicals (because the chemical reaction
requires oxygen). Whatever the answer,
they certainly make for a nice holiday
in the Bahamas. UNKNOWN
source: http://www.lifeslittlemysteries.
com/images/i/1651/original/dinoflagellat
e.jpg

1,080,000,000 YBN
27 28 29 30 31
87) The Excavates Discicristates
{DiSKIKriSTATS}; the ancestor of
protists which have mitochondria with
discoidal (shaped like a disk18 )
cristae (the folded inner membrane of a
mitochondrion19 ) (the ancestor of
euglenids, leishmanias {lEsmaNEuZ20 },
trypanosomes {TriPaNiSOMZ21 }, and
acrasid {oKrASiD22 } slime molds).23 24
25 26

FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ Russell F. Doolittle, Da-Fei Feng,
Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
4. ^ "leishmanias."
Dictionary.com Unabridged. Random
House, Inc. 08 Jun. 2012.
http://dictionary.reference.com/browse/l
eishmanias>.
5. ^ "trypanosome." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/t
rypanosome>.
6. ^
http://www.howjsay.com/index.php?word=ac
rasiomycetes&submit=Submit

7. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
8. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
9. ^ Russell F. Doolittle, Da-Fei Feng,
Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
10. ^ Baldauf, "An overview of
the phylogeny and diversity of
eukaryotes", Journal of Systematics and
Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

11. ^ "leishmanias." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/l
eishmanias>.
12. ^ "trypanosome." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/t
rypanosome>.
13. ^
http://www.howjsay.com/index.php?word=ac
rasiomycetes&submit=Submit

14. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
15. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
16. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
17. ^ Baldauf, "An overview of
the phylogeny and diversity of
eukaryotes", Journal of Systematics and
Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

18. ^ "discoidal." Dictionary.com
Unabridged. Random House, Inc. 24 May.
2013.
http://dictionary.reference.com/browse/d
iscoidal>.
19. ^ "cristae." Collins English
Dictionary - Complete & Unabridged 10th
Edition. HarperCollins Publishers. 24
May. 2013.
http://dictionary.reference.com/browse/c
ristae>.
20. ^ "leishmanias." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/l
eishmanias>.
21. ^ "trypanosome." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/t
rypanosome>.
22. ^
http://www.howjsay.com/index.php?word=ac
rasiomycetes&submit=Submit

23. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
24. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
25. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
26. ^ Baldauf, "An overview of
the phylogeny and diversity of
eukaryotes", Journal of Systematics and
Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

27. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1080
mybn}
28. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
{1956 mybn}
29. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1999 mybn}
30. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (1600mybn)
31. ^ Russell
F. Doolittle, Da-Fei Feng, Simon Tsang,
Glen Cho, Elizabeth Little,
"Determining Divergence Times of the
Major Kingdoms of Living Organisms with
a Protein Clock", Science, (1996).
(1800-1900 for eukaryote/prokaryote
separation)

MORE INFO
[1]
http://biology.kenyon.edu/Microbial_Bior
ealm/eukaryotes/euglenozoa/euglenozoa.ht
m

[2]
http://www.sirinet.net/~jgjohnso/apbio30
.html

 
[1] euglena
source: http://www.fcps.k12.va.us/Stratf
ordLandingES/Ecology/mpages/euglena.htm


[2] euglena
source: http://protist.i.hosei.ac.jp/PDB
/Images/Mastigophora/Euglena/genus1L.jpg

1,080,000,000 YBN
24 25 26 27
97) A eukaryote eye evolves; the first
three-dimensional response to light.18
19 20

The earliest eye is a light sensitive
area in a unicellular eukaryote that
probably evolved from a plastid.21 22

Eukaryotes are the first organisms to
evolve the ability to follow light
direction in three dimensions in open
water.23

FOOTNOTES
1. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

2. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

3. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

4. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

5. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

6. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

7. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

8. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

9. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

10. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

11. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

12. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

13. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

14. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

15. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

16. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

17. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

18. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

19. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

20. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

21. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

22. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

23. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

24. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
25. ^ Yoon, Hwan
Su et al. “A Molecular Timeline for
the Origin of Photosynthetic
Eukaryotes.” Molecular Biology and
Evolution 21.5 (2004): 809 -818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{guess based on
earliest secondary plastid 1274 my and
euglena at 1410 mybn}
26. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{guess based on earliest secondary
plastid 1274 my and euglena at 1410
mybn}
27. ^ my own estimate based on where
euglenozoa genetically appear to evolve
{guess based on earliest secondary
plastid 1274 my and euglena at 1410
mybn}

MORE INFO
[1] Peter Hegemann, "Algal
Sensory Photoreceptors", Annual Review
of Plant Biology, Vol. 59: 167 -189
(Volume publication date June 2008)
http://www.annualreviews.org/doi/full/
10.1146/annurev.arplant.59.032607.092847
%40recept.2009.1.issue-1

[2] Trevor D. Lamb, Detlev Arendt, and
Shaun P. Collin, "The evolution of
phototransduction and eyes", Phil.
Trans. R. Soc. B October 12, 2009
364:2791-2793;
doi:10.1098/rstb.2009.0106 http://rstb.
royalsocietypublishing.org/content/364/1
531/2791.full

[3] Kreimer, G. (2009) The green algal
eyespot apparatus: a primordial visual
system and more? Current Genetics
55:19-43 doi:10.007/s00294-008-0224-8
PMID
19107486 http://www.springerlink.com/co
ntent/v54v124mxg52r091/

 
[1] Adapted from: Euglena is a
photosynthetic euglenoid with at least
150 described species. The cells are
cylindrical with a rounded anterior and
tapered posterior. The chloroplasts are
well-developed, bright green, and
sometimes have pyrenoids. ... Euglena
is a photosynthetic euglenoid with at
least 150 described species. The cells
are cylindrical with a rounded anterior
and tapered posterior. The chloroplasts
are well-developed, bright green, and
sometimes have pyrenoids. They are
often discoidal in shape but can also
be ovate, lobate, elongate, U-shaped,
or ribbon-shaped. Some researchers use
the structure and position of the
chloroplasts to divide the group into
three subgenera. Even though they are
able to photosynthesize, Euglena cells
also have a phagotrophic ingestion
apparatus. Euglena has one long,
protruding flagellum and a shorter
flagellum that is not usually
visible. The euglenoids can glide
and swim using their flagella, or can
ooze along a substrate with an
undulating, shape-changing, contraction
motion called metaboly. The cytoplasm
of Euglena and other euglenoids
contains many paramylon starch storage
granules. The euglenoid cells are
covered by a pellicle composed of
ribbonlike, woven strips of
proteinaceous material that cover the
cell in a helical arrangement from apex
to posterior. Freshwater euglenoids
have a contractile vacuole. Euglenoids
sense light using a red pigmented
eyespot or stigma and the paraflagellar
body located at the base of the
emergent flagella. The cytoplasm of
Euglena and other euglenoids contains
many paramylon starch storage granules.
The euglenoid cells are covered by a
pellicle composed of ribbonlike, woven
strips of proteinaceous material that
cover the cell in a helical arrangement
from apex to posterior. Freshwater
euglenoids have a contractile vacuole.
Euglenoids sense light using a red
pigmented eyespot or stigma and the
paraflagellar body located at the base
of the emergent flagella. UNKNOWN
source: http://silicasecchidisk.conncoll
.edu/Pics/Other%20Algae/Other_jpegs/Eugl
ena_Key225.jpg


[2] Figure 1. The distribution of
three-dimensional phototaxis in the
tree of eukaryotes. Red arrows indicate
the likely point of origin of
phototaxis in a given group. Question
marks indicate uncertainties regarding
independent or common origin. Figure
1 from: Jékely, Gáspár. ''Evolution
of phototaxis.'' Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short
COPYRIGHTED
source: http://rstb.royalsocietypublishi
ng.org/content/364/1531/2795/F1.large.jp
g

1,050,000,000 YBN
18 19 20 21 22 23 24 25 26
169) The Protists Stramenopiles
{STro-meN-o-Pi-lEZ13 } (also called
Heterokonts) evolve (ancestor of all
brown algae, golden algae, diatoms, and
oomycota {Ou-mI-KO-Tu14 )).15 16

Almost all Stramenopiles have unique
three-part hairs on the flagella at
some stage in the life cycle.17

FOOTNOT
ES
1. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

2. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

3. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
4. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

5. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

6. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

7. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
8. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

9. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

10. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

11. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
12. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

13. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

14. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

15. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
16. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

17. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
18. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{1050 mybn}
19. ^
Hackett JD, Yoon HS, Butterfield NJ,
Sanderson MJ, Bhattacharya D, "Plastid
endosymbiosis: Sources and timing of
the major events.", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1180 mybn}
20. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1480my}
21. ^ S. Blair Hedges and Sudhir
Kumar, "The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1345 my}
22. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf} {1956my} {Alveolates and Plant
split)1956my}
23. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). {1600 my}
{Chromalveolates)1600 my}
24. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
{c775my} {c754my}
25. ^ Emmanuelle J. Javaux,
Andrew H. Knoll and Malcolm Walter,
"Recognizing and Interpreting the
Fossils of Early Eukaryotes", Origins
of Life and Evolution of Biospheres,
Volume 33, Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{c1000my}
26. ^ Emmanuel J. P.
Douzery, Elizabeth A. Snell, Eric
Bapteste, Frédéric Delsuc, and Hervé
Philippe, "The timing of eukaryotic
evolution: Does a relaxed molecular
clock reconcile proteins and fossils?",
Proc Natl Acad Sci U S A. 2004 October
26; 101(43):
15386–15391. http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC524432/?report=abstr
act
{872 my}
 
[1] Phylum Stramenopiles COPYRIGHTED
source: Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.


[2] S. Blair Hedges and Sudhir Kumar,
''The TimeTree of Life'', 2009,
p117-118. http://www.timetree.org/book.
php COPYRIGHTED
source: http://www.timetree.org/book.php

1,000,000,000 YBN
11
324) The Protists Mesomycetozoea
{me-ZO-mI-SE-TO-ZO-u7 } evolve (also
called DRIPS).8

Mesomycetozoea are in the protist
Phylum Choanozoa (which includes the
Choanoflagellates {KO-e-nO-FlaJ-e-lATS9
}, thought to be the ancestor of
sponges).10

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
5. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

8. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
9. ^
http://howjsay.com/index.php?word=choano
flagellate&submit=Submit

10. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
11. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). {1000 MYBN (end
of Mesoproterozoic}

MORE INFO
[1] Shalchian-Tabrizi K, Minge
MA, Espelund M, Orr R, Ruden T, et al.
2008 Multigene Phylogeny of Choanozoa
and the Origin of Animals. PLoS ONE
3(5): e2098.
doi:10.1371/journal.pone.0002098
[2] Leonel Mendoza, John W. Taylor, and
Libero Ajello, "THE CLASS
MESOMYCETOZOEA: A Heterogeneous Group
of Microorganisms at the Animal-Fungal
Boundary", Annual Review of
Microbiology October 2002, Vol. 56:
315-344. http://www.annualreviews.org/d
oi/full/10.1146/annurev.micro.56.012302.
160950

 
[1] Ichthyophonus, a fungus-like
protistan that occurs in high
prevalence in Pacific Ocean perch
(Sebastes aultus) and yellowtail
rockfish (Sebastes flavedus). Note the
parasite forms branching hyphae-like
structures. Ichthyophonus hoferi has
caused massive mortalities in herring
in the Atlantic ocean, and has recently
been reported to cause disease in wild
Pacific herring from Washington through
Alaska. COPYRIGHTED EDU
source: http://oregonstate.edu/dept/salm
on/projects/images/16Ichthyophonus.jpg


[2] Microscopic appearence of the
organism is dependent on its stage of
development. The stages include (1)
spore at ''resting'' stage, (2)
germinating spore, (3) hyphal
stage. It is believed that there are
two forms of Ichthyophonus, both
belonging to one genus. One of them is
known as the ''salmon'' form, occuring
in freshwater and cold-preferring sea
fishes: this form is characterized by
its ability to produce long tubulose
germ hyphae. The other is called the
''aquarium fish'' form, typical of the
tropical freshwater fishes. This form
is completely devoid of hyphae.
Developmental cycle of Ichthyophonus
hoferi: 1-5 - development of
''daughter'' spores, 7-11 - development
of resting spore from the ''daughter''
spore, 12-19 - development of resting
spore by fragmentation. COPYRIGHTED
source: http://www.fao.org/docrep/field/
003/AC160E/AC160E02.htm

985,000,000 YBN
23 24 25
309) The Protist Phylum Oomycota
{Ou-mI-KO-Tu17 } evolves (ancestor of
the Oomycetes18 ; water molds).19 20 21
22

FOOTNOTES
1. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

2. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
4. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000).
http://www.sciencemag.org/content/290/
5493/972.full

5. ^ http://sn2000.taxonomy.nl/
6. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

7. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
8. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
9. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
10. ^
http://sn2000.taxonomy.nl/
11. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

12. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life",
2009. http://www.timetree.org/book.php
13. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
14. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
15. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
16. ^
http://sn2000.taxonomy.nl/
17. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

18. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life",
2009. http://www.timetree.org/book.php
19. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
20. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
21. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
22. ^
http://sn2000.taxonomy.nl/
23. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{985}
24. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1973mybn)
25. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)

MORE INFO
[1]
http://www.ilmyco.gen.chicago.il.us/Term
s/coeno128.html#coeno128

[2] "Coenocyte". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Coenocyte
[3]
http://users.rcn.com/jkimball.ma.ultrane
t/BiologyPages/P/Protists.html#Water_Mol
ds

[4]
http://kentsimmons.uwinnipeg.ca/16cm05/1
116/16protists.htm

 
[1] Figure 2 from: Sandra L. Baldauf,
A. J. Roger, I. Wenk-Siefert, W. F.
Doolittle, ''A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data'', Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full Figure 2 Single-gene
phylogenies support subsets of the
combined protein tree. (A) A summary of
the tree in Fig. 1is shown with
supergroups indicated beside brackets
to the right. Multi-taxon represented
clusters are given as triangles, with
height proportional to number of taxa
and width proportional to averaged
overall branch length (1) compensated
for missing data (47). (B) Published
support for the numbered nodes in (A)
is shown for commonly used molecular
phylogenetic markers grouped as (a)
ribosomal RNAs, (b) proteins not used
in the current analysis, (c) proteins
used in the current analysis, and (d)
the combined data (Fig. 1). These
markers are, from left to right, SSU
[SSU rRNA (1–4)], LSU [LSU rRNA
(19)], LSU+SSU [combined LSU and SSU
rRNA (48)], EF-2 (10), V/A-ATPases
[vacuolar ATPases (49)], HSP70-cy
[cytosolic 70-kD heat shock protein
(50)], mito [combined mitochondrial
proteins (51)], RPB1 (52), actin (8,
16, 53), α-tubulin (8, 54), β-tubulin
(8, 54), EF-1α (15, 20), and combined
(Fig. 1). Rejected nodes are indicated
in pink and accepted nodes in green,
with checked circles indicating BP < 70% and solid circles indicating BP >
70%. COPYRIGHTED
source: http://www.sciencemag.org/conten
t/290/5493/972/F2.large.jpg


[2] Fig. 1. A consensus phylogeny of
eukaryotes. The vast majority of
characterized eukaryotes, with the
notable exception of major subgroups of
amoebae, can now be assigned to one of
eight major groups. Opisthokonts (basal
flagellum) have a single basal
flagellum on reproductive cells and
flat mitochondrial cristae (most
eukaryotes have tubular ones).
Eukaryotic photosynthesis originated in
Plants; theirs are the only plastids
with just two outer membranes.
Heterokonts (different flagellae) have
a unique flagellum decorated with
hollow tripartite hairs (stramenopiles)
and, usually, a second plain one.
Cercozoans are amoebae with filose
pseudopodia, often living with in tests
(hard outer shells), some very
elaborate (foraminiferans). Amoebozoa
are mostly naked amoebae (lacking
tests), often with lobose pseudopodia
for at least part of their life cycle.
Alveolates have systems of cortical
alveoli directly beneath their plasma
membranes. Discicristates have discoid
mitochondrial cristae and, in some
cases, a deep (excavated) ventral
feeding groove. Amitochondrial
excavates lack substantial molecular
phylogenetic support, but most have an
excavated ventral feeding groove, and
all lack mitochondria. The tree shown
is based on a consensus of molecular
(1-4) and ultrastructural (16, 17) data
and includes a rough indication of new
ciPCR ''taxa'' (broken black lines)
(7-11). An asterisk preceding the taxon
name indicates probable paraphyletic
group COPYRIGHTED
source: http://www.sciencemag.org/cgi/co
ntent/full/300/5626/1703

900,000,000 YBN
9 10 11 12
6281) The protists Rhizaria
{rI-ZaR-E-u7 } evolve (ancestor of all
Radiolaria, Foraminifera and
Cercozoa).8

FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
5. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

8. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
9. ^ Medlin, L. , Kooistra, W.
, Potter, D. , Saanders, G. and
Wandersen, R. (1997): Phylogenetic
relationships of the 'golden algae'
(haptophytes, heterokont chromophytes)
and their plastids , The origin of the
algae and their plastids (D
Bhattacharya, ed ) Plant systematics
and evolution (Suppl
) http://epic.awi.de/2100/
AND http://epic.awi.de/2100/1/Med1997c.
pdf {900 my}
10. ^
http://www.timetree.org/index.php?taxon_
a=rhizaria&taxon_b=haptophyta&submit=Sea
rch
{900 my}
11. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{804 my} {754 my}
12. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). {1600 my}

MORE INFO
[1] Moreira D, von der Heyden S,
Bass D, López-García P, Chao E,
Cavalier-Smith T (July 2007). "Global
eukaryote phylogeny: Combined small-
and large-subunit ribosomal DNA trees
support monophyly of Rhizaria, Retaria
and Excavata". Mol. Phylogenet. Evol.
44 (1): 255–66.
http://linkinghub.elsevier.com/retriev
e/pii/S1055-7903(06)00433-7

[2]
http://www.timetree.org/index.php?taxon_
a=rhizaria&taxon_b=alveolates&submit=Sea
rch

[3] Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120
 
[1] Figure : Maximum likelihood
phylogeny of Rhizaria inferred from SSU
rRNA gene sequences using the GTR+G+I
model of evolution. UNKNOWN
source: http://www.unige.ch/sciences/bio
logie/biani/msg/Amoeboids/Rhizaria_large
.jpg


[2] Figure 1 from: Keeling, Patrick
J. et al. “The tree of eukaryotes.”
Trends in Ecology & Evolution 20.12
(2005):
670-676. http://www.sciencedirect.com/s
cience/article/pii/S0169534705003046
source: http://www.sciencedirect.com/cac
he/MiamiImageURL/1-s2.0-S016953470500304
6-gr1.jpg/0?wchp=dGLbVBA-zSkWz

850,000,000 YBN
17 18 19 20
224) The Fungi "Zygomycota" evolves
(ancestor of bread molds, and pin
molds).13 14 15 16

FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
2. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
3. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003).
4. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
5. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
6. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
7. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003).
8. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
9. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
10. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
11. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003).
12. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
13. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
14. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
15. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003).
16. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
17. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1250mybn)
18. ^ Daniel S. Heckman,1 David M.
Geiser,2 Brooke R. Eidell,1 Rebecca
L. Stauffer,1 Natalie L. Kardos,
"Molecular Evidence for the Early
Colonization of Land by Fungi and
Plants", Science 10 August 2001: Vol.
293. no. 5532, pp. 1129 - 1133 DOI:
10.1126/science.1061457, (2001).
(1107mybn)
19. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003). (1107mybn)
20. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004).
(c850m)
 
[1] Figure 2. Zygomycota A: sporangia
of Mucor sp. B: whorl of sporangia of
Absidia sp. C: zygospore of
Zygorhynchus sp. D: sporangiophore and
sporangiola of Cunninghamella sp.
source: http://www.botany.utoronto.ca/Re
searchLabs/MallochLab/Malloch/Moulds/Cla
ssification.html


[2] Figure 3. Syncephalis, a member of
the Zygomycota parasitic on other
Zygomycota
source: http://www.botany.utoronto.ca/Re
searchLabs/MallochLab/Malloch/Moulds/Cla
ssification.html

767,000,000 YBN
18 19 20
312) The Protist Phylum "Ciliophora"
{SiL-E-oF-R-u11 } evolves (the
"Ciliates") (ancestor of the
paramecium).12 13 14

The Ciliophora are characterized by
having numerous cilia which they use to
move themselves15 .16 Most ciliates
are unicellular.17

FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
4. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
6. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
7. ^
"ciliophora." Dictionary.com
Unabridged. Random House, Inc. 03 Jun.
2013.
http://dictionary.reference.com/browse/c
iliophora>.
8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
9. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
10. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
11. ^
"ciliophora." Dictionary.com
Unabridged. Random House, Inc. 03 Jun.
2013.
http://dictionary.reference.com/browse/c
iliophora>.
12. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
13. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
14. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
15. ^ Brusca
and Brusca, "Invertebrates", Second
Edition, 2003, p135-145.
16. ^ "ciliate." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 30 Mar. 2012.
http://www.answers.com/topic/ciliate
17. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p135-145.
18. ^ Emmanuelle J. Javaux, Andrew H.
Knoll and Malcolm Walter, "Recognizing
and Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{750 my}
19. ^ Emmanuel J.
P. Douzery, Elizabeth A. Snell, Eric
Bapteste, Frédéric Delsuc, and Hervé
Philippe, "The timing of eukaryotic
evolution: Does a relaxed molecular
clock reconcile proteins and fossils?",
Proc Natl Acad Sci U S A. 2004 October
26; 101(43):
15386–15391. http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC524432/?report=abstr
act
{767 my}
20. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{620 my}

MORE INFO
[1] S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1973mybn)
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)
[3] Sandra L. Baldauf,
A. J. Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full
has heterkonts before
ciliophora and apicomplexa branch
 
[1] Paramecium protozoan,
SEM C001/0068 Rights Managed Credit:
STEVE GSCHMEISSNER/SCIENCE PHOTO
LIBRARY Caption: Paramecium protozoan,
coloured scanning electron micrograph
(SEM). Paramecia are a group of
unicellular ciliate protozoa. They
inhabit fresh water, and feed mainly on
bacteria and smaller protozoa.
Paramecia range from about 50 to 350
micrometres in length, depending on
species. Simple cilia, which cover the
body, are moved in a synchronous motion
to allow the cell to move.
Magnification: x825 when printed at 10
centimetres wide. COPYRIGHTED
source: http://www.nonlocal.com/hbar/par
amecium.gif


[2] Summary Description English:
Scanning electron microscope view of
Oxytricha trifallax Español: Imagen
de microscopía electrónica de barrido
de Oxytricha trifallax Date Unknown
date Source http://www.genome.gov/I
mages/press_photos/highres/85-300.jpg
Author Unknown Permission (Reusin
g this file) See below. PD [1] Fig.
1. A consensus phylogeny of eukaryotes.
The vast majority of characterized
eukaryotes, with the notable exception
of major subgroups of amoebae, can now
be assigned to one of eight major
groups. Opisthokonts (basal flagellum)
have a single basal flagellum on
reproductive cells and flat
mitochondrial cristae (most eukaryotes
have tubular ones). Eukaryotic
photosynthesis originated in Plants;
theirs are the only plastids with just
two outer membranes. Heterokonts
(different flagellae) have a unique
flagellum decorated with hollow
tripartite hairs (stramenopiles) and,
usually, a second plain one. Cercozoans
are amoebae with filose pseudopodia,
often living with in tests (hard outer
shells), some very elaborate
(foraminiferans). Amoebozoa are mostly
naked amoebae (lacking tests), often
with lobose pseudopodia for at least
part of their life cycle. Alveolates
have systems of cortical alveoli
directly beneath their plasma
membranes. Discicristates have discoid
mitochondrial cristae and, in some
cases, a deep (excavated) ventral
feeding groove. Amitochondrial
excavates lack substantial molecular
phylogenetic support, but most have an
excavated ventral feeding groove, and
all lack mitochondria. The tree shown
is based on a consensus of molecular
(1-4) and ultrastructural (16, 17) data
and includes a rough indication of new
ciPCR ''taxa'' (broken black lines)
(7-11). An asterisk preceding the taxon
name indicates probable paraphyletic
group COPYRIGHTED
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/6/6e/Oxytricha_trifa
llax.jpg/1024px-Oxytricha_trifallax.jpg

767,000,000 YBN
18 19 20
314) The Protist Phylum "Apicomplexa"
{a-PE-KoM-PleK-Su13 } evolves (includes
Malaria and Toxoplasmosis).14 15 16

Apicomplexans have a special cell
organelle called the apical complex
which helps to invade the host cell.17


FOOTNOTES
1. ^
http://howjsay.com/index.php?word=apicom
plexa&submit=Submit

2. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
4. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
5. ^
http://howjsay.com/index.php?word=apicom
plexa&submit=Submit

6. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
8. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
9. ^
http://howjsay.com/index.php?word=apicom
plexa&submit=Submit

10. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
11. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
12. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
13. ^
http://howjsay.com/index.php?word=apicom
plexa&submit=Submit

14. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
15. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
16. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
17. ^ Woo,
P.T.K. Fish Diseases and Disorders:
Volume 1: Protozoan and Metazoan
Infections. CABI, 2006. CABI Publishing
Series.,
p183. http://books.google.com/books?id=
bm7HSCLcCbUC&pg=PA183

18. ^ Emmanuel J. P. Douzery, Elizabeth
A. Snell, Eric Bapteste, Frédéric
Delsuc, and Hervé Philippe, "The
timing of eukaryotic evolution: Does a
relaxed molecular clock reconcile
proteins and fossils?", Proc Natl Acad
Sci U S A. 2004 October 26; 101(43):
15386–15391. http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC524432/?report=abstr
act
{767 my}
19. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{620 my}
20. ^ Emmanuelle J.
Javaux, Andrew H. Knoll and Malcolm
Walter, "Recognizing and Interpreting
the Fossils of Early Eukaryotes",
Origins of Life and Evolution of
Biospheres, Volume 33, Number 1, 75-94,
DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{api+dino and ciliate
split)1100 my}

MORE INFO
[1]
http://www.sirinet.net/~jgjohnso/apbio30
.html

[2] S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1973mybn)
[3] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)
[4] Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p135
 
[1] Description A thin-film Giemsa
stained micrograph of ring-forms, and
gametocytes of Plasmodium falciparum.
From
http://phil.cdc.gov/phil/home.asp Date
2006-11-16 (original upload
date) Source Originally from
en.wikipedia; description page is/was
here. Author Original uploader was
TimVickers at
en.wikipedia Permission (Reusing this
file) PD
source: http://upload.wikimedia.org/wiki
pedia/commons/3/3c/Plasmodium.jpg


[2] Fig. 1. A consensus phylogeny of
eukaryotes. The vast majority of
characterized eukaryotes, with the
notable exception of major subgroups of
amoebae, can now be assigned to one of
eight major groups. Opisthokonts (basal
flagellum) have a single basal
flagellum on reproductive cells and
flat mitochondrial cristae (most
eukaryotes have tubular ones).
Eukaryotic photosynthesis originated in
Plants; theirs are the only plastids
with just two outer membranes.
Heterokonts (different flagellae) have
a unique flagellum decorated with
hollow tripartite hairs (stramenopiles)
and, usually, a second plain one.
Cercozoans are amoebae with filose
pseudopodia, often living with in tests
(hard outer shells), some very
elaborate (foraminiferans). Amoebozoa
are mostly naked amoebae (lacking
tests), often with lobose pseudopodia
for at least part of their life cycle.
Alveolates have systems of cortical
alveoli directly beneath their plasma
membranes. Discicristates have discoid
mitochondrial cristae and, in some
cases, a deep (excavated) ventral
feeding groove. Amitochondrial
excavates lack substantial molecular
phylogenetic support, but most have an
excavated ventral feeding groove, and
all lack mitochondria. The tree shown
is based on a consensus of molecular
(1-4) and ultrastructural (16, 17) data
and includes a rough indication of new
ciPCR ''taxa'' (broken black lines)
(7-11). An asterisk preceding the taxon
name indicates probable paraphyletic
group COPYRIGHTED
source: http://www.sciencemag.org/cgi/co
ntent/full/300/5626/1703

680,000,000 YBN
34 35 36 37 38
326) The Protists "Choanoflagellates"
{KO-e-nO-FlaJ-e-lATS25 } evolve.26 27
28 29 30 31
Choanoflagellates are the
closest relatives to the animals and
may be direct ancestors of sponges.32

There are about 140 species of
choanoflagellates. Some are
free-swimming, propelling themselves
with a flagellum. Others are attached
by a stalk, sometimes with several
together in a colony. Choanoflagellates
use their flagellum to drive water into
the funnel where food particles like
bacteria are trapped and engulfed.33

FO
OTNOTES
1. ^
http://howjsay.com/index.php?word=choano
flagellate&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

4. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
5. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

6. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
8. ^
http://howjsay.com/index.php?word=choano
flagellate&submit=Submit

9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
10. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

11. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
12. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

13. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
14. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
15. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p502.
16. ^
http://howjsay.com/index.php?word=choano
flagellate&submit=Submit

17. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
18. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

19. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
20. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

21. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
22. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
23. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p502.
24. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p502.
25. ^
http://howjsay.com/index.php?word=choano
flagellate&submit=Submit

26. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
27. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

28. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
29. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

30. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
31. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
32. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p502.
33. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p502.
34. ^ Peterson,
Kevin J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

35. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1000 drips and 900
choano) {900 MYBN}
36. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{900 MYBN}
37. ^ S. Blair Hedges and Sudhir
Kumar, "The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1020 mybn}
38. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano) {1450
mybn}

MORE INFO
[1] Elizabeth Pennisi, "Drafting
a Tree", Science, (2003)
[2] "Ichthyosporea".
Wikipedia. Wikipedia, 2008.
http://species.wikipedia.org/wiki/Ichthy
osporea

 
[1] Choanoflagellate single cell
(thecate) UNKNOWN
source: http://behance.vo.llnwd.net/prof
iles22/483113/projects/1558429/6ea555ab5
457e21432def0f2e6b83fe3.jpg


[2] Salpingoeca: Cells solitary or
colonial with a distinct and firm
sheath or theca usually as a cup either
sessile or with a pedicel; theca
colourless or amber; contractile
vacuoles posterior in freshwater
specie; in freshwater, brackish, and
marine habitats. Record information:
Salpingoeca (sal-ping-go-eek-a), a
collar flagellate (choanoflagellate) -
all of which have a single anterior
flagellum surrounded by a collar of
very fine pseudopodia (in cross-section
the collar seems like two arms, one on
either side of the flagellum). The
flagellum beats drawing water through
the collar and bacteria and other small
particles are trapped and then
ingested. Believed to be the source
group of the sponges and the metazoa.
Salpingoeca has an organic lorica.
Phase contrast. This picture was
taken by David Patterson, Linda Amaral
Zettler and Virginia Edgcomb of
material from the salt marsh at Little
Sippewissett (Massachusetts, USA) in
Autumn, 2000 and in Spring and summer,
2001. NONCOMMERCIAL USE
source: http://microscope.mbl.edu/script
s/microscope.php?func=imgDetail&imageID=
746

670,000,000 YBN
20 21 22
286) Multicellularity evolves in a free
moving Protist.15 16 This allows
larger free moving organisms to
evolve.17

This multicellularity is thought to be
independently evolved, and not related
to the earlier filamentous
multicellularity of prokaryotes like
cyanobacteria, and eukaryotes like
algae.18 19

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p497-506.
2. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
4. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
5. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
6. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p497-506.
8. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
9. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
10. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
11. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
12. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
13. ^ Shuhai
Xiao, Yun Zhang, Andrew H. Knoll,
"Three-dimensional preservation of
algae and animal embryos in a
Neoproterozoic phosphorite", Nature
391, 553-558 (5 February
1998) http://www.nature.com/cgi-taf/Dyn
aPage.taf?file=/nature/journal/v391/n666
7/full/391553a0_fs.html

14. ^ Buss, L. W. The Evolution of
Individuality (Princeton Univ. Press,
NJ, 1987).
15. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
16. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
17. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
18. ^ Shuhai
Xiao, Yun Zhang, Andrew H. Knoll,
"Three-dimensional preservation of
algae and animal embryos in a
Neoproterozoic phosphorite", Nature
391, 553-558 (5 February
1998) http://www.nature.com/cgi-taf/Dyn
aPage.taf?file=/nature/journal/v391/n666
7/full/391553a0_fs.html

19. ^ Buss, L. W. The Evolution of
Individuality (Princeton Univ. Press,
NJ, 1987).
20. ^ Peterson, Kevin J., and
Nicholas J. Butterfield. “Origin of
the Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

21. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p497-506. (c850my)
22. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). (1351my)

MORE INFO
[1] Nicholas H. Barton,
"Evolution", 2007,
p225-226. http://books.google.com/books
?id=mMDFQ32oMI8C&pg=PA225

[2] Brusca and Brusca, "Invertebrates",
2003, 188-191
 
[1] Sponge showing several choanocyte
chambers UNKNOWN
source: http://behance.vo.llnwd.net/prof
iles22/483113/projects/1558429/43a2a4c7e
127f66b7090ed679a8da30a.jpg


[2] Combination of: Saepicula and
Sphaeroeca NONCOMMERCIAL USE
source: http://microscope.mbl.edu/script
s/microscope.php?func=imgDetail&imageID=
3229

670,000,000 YBN
297) The diplontic life cycle evolves;
this organism is predominantly diploid,
mitosis in the haploid phase does not
occur.6 7

All animals are diplontic, and descend
from this multicellular organism.8

FOOT
NOTES
1. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
2. ^ Mark Kirkpatrick,
"The evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

3. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
4. ^ Mark Kirkpatrick,
"The evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

5. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p252.
6. ^ John Ringo,
"Fundamental Genetics", 2004, p201.
7. ^ Mark
Kirkpatrick, "The evolution of
haploid-diploid life cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

8. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p252.
 
[1] Gametic Meiosis. GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Gametic_meiosis.png


[2] Gametic Meiosis. GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Gametic_meiosis.png

660,000,000 YBN
56 57 58 59 60
81) The first animal and first
metazoan, the sponge evolves. This
begins the Animal Kingdom, and the
Phylum Porifera; the sponges. There are
only three major kinds of metazoans:
sponges, cnidarians, and bilaterians.35
36 37

The word "porifera" means "pore
bearing" in Latin38 , and water
continuously flows through the pores in
sponges39 .

Metazoans are multicellular and have
differentiation (their cells perform
different functions). Sponges have
cells that form a body wall, cells that
secrete the skeleton, contractile
{KunTraKTL40 } cells, cells that digest
food, and other kinds of cell types.41
42 43 44

All sponge cells are totipotent and so
are capable of regrowing a new
sponge.45 In sponges there is no
distinction between germ line and
soma.46 Some sponges can live for over
1000 years.47

Sponges have two layers, each a single
cell thick. The outer surface is called
the pinacoderm {PiN-o-KO-DRM48 } and
is made of cells called pinacocytes
{PiN-o-KO-SITS49 }. On the inner
surface is the choanoderm {KOenO-DRM or
KO-aNo-DRM50 } which is made of
flagellated cells called choanocytes
{KOenO-SITS51 or KO-aNo-SITS52 }.
Between these two thin cellular sheets
is the jellylike53 mesohyl {mASuHIL54
}, which may vary in thickness and
plays vital roles in digestion, gamete
production, secretion of skeleton, and
transport of nutrients and waste
products by special amoeboid cells.55

F
OOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p497-501.
3. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
4. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
5. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-501.
6. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
8. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p497-501.
9. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
10. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
11. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
12. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
13. ^ Brusca
and Brusca, "Invertebrates", 2003,
188-191.
14. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
15. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
16. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-501.
17. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
18. ^
http://oxforddictionaries.com/definition
/english/Porifera

19. ^ Harold Levin, "The Earth Through
Time", 2006, p335.
20. ^ "contractile."
Dictionary.com Unabridged. Random
House, Inc. 31 Dec. 2012.
http://dictionary.reference.com/browse/c
ontractile>.
21. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
22. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
23. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
24. ^ Brusca
and Brusca, "Invertebrates", 2003,
188-191.
25. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
26. ^
http://howjsay.com/index.php?word=pinaco
derm&submit=Submit

27. ^ "pinacocyte." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 27 Dec. 2012.
http://www.answers.com/topic/pinacocyte
28. ^
http://howjsay.com/index.php?word=choano
derm&submit=Submit

29. ^
http://howjsay.com/index.php?word=choano
cyte&submit=Submit

30. ^ "choanocyte." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 27
Dec. 2012.
http://www.answers.com/topic/choanocyte
31. ^ Meglitsch, P.A., and F.R. Schram.
Invertebrate Zoology. Oxford University
Press, USA, 1991, p56.
32. ^
http://visual.merriam-webster.com/pronun
ciation.php?id=animal-kingdom/simple-org
anisms-echinoderms/29852&title=mesohyl

33. ^ Brusca and Brusca,
"Invertebrates", 2003, p183.
34. ^ Palmer, et
al., "Prehistoric Life", 2009, p101.
35. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
36. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p497-501.
37. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
38. ^
http://oxforddictionaries.com/definition
/english/Porifera

39. ^ Harold Levin, "The Earth Through
Time", 2006, p335.
40. ^ "contractile."
Dictionary.com Unabridged. Random
House, Inc. 31 Dec. 2012.
http://dictionary.reference.com/browse/c
ontractile>.
41. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
42. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
43. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
44. ^ Brusca
and Brusca, "Invertebrates", 2003,
188-191.
45. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
46. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p497-499.
47. ^ Palmer, et al.,
"Prehistoric Life", 2009, p101.
48. ^
http://howjsay.com/index.php?word=pinaco
derm&submit=Submit

49. ^ "pinacocyte." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 27 Dec. 2012.
http://www.answers.com/topic/pinacocyte
50. ^
http://howjsay.com/index.php?word=choano
derm&submit=Submit

51. ^
http://howjsay.com/index.php?word=choano
cyte&submit=Submit

52. ^ "choanocyte." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 27
Dec. 2012.
http://www.answers.com/topic/choanocyte
53. ^ Meglitsch, P.A., and F.R. Schram.
Invertebrate Zoology. Oxford University
Press, USA, 1991, p56.
54. ^
http://visual.merriam-webster.com/pronun
ciation.php?id=animal-kingdom/simple-org
anisms-echinoderms/29852&title=mesohyl

55. ^ Brusca and Brusca,
"Invertebrates", 2003, p183.
56. ^ Peterson,
Kevin J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

57. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p224-229. http://www.timetree.org/book.
php

58. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (c850my) {c800my}
59. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). (1351my)
60. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005). (600?)

MORE INFO
[1] Müller, Werner E. G. “The
Origin of Metazoan Complexity: Porifera
as Integrated Animals.” Integrative
and Comparative Biology 43.1 (2003):
3–10. http://www.jstor.org/stable/388
4834

 
[1] Summary Description English:
Marine sponge. Color adjusted (but not
color accurate) underwater photograph
taken by Dlloyd using a digital camera
at a depth of approximately 100 feet in
Cayman. GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/6/62/SpongeColorCorrect.jp
g


[2]
source: http://www.museums.org.za/bio/me
tazoa.htm

660,000,000 YBN
15 16 17 18
517) The male gonad (testis {TeSTiS10 }
or testicle) evolves in a sponge.11 In
sponges sperm are contained in
spermatic cysts, which are choanocyte
chambers transformed by the formation
of sperm12 (spermatogenesis), but ova
are distributed throughout the mesohyl
{mASuHIL13 } (or middle layer).14

FOOTN
OTES
1. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p20.
2. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p20.
3. ^ "testis." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 21 Sep. 2011.
http://www.answers.com/topic/testis
4. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p20.
5. ^ "testis."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 21 Sep. 2011.
http://www.answers.com/topic/testis
6. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p20.
7. ^
"spermatogenesis." Dictionary.com
Unabridged. Random House, Inc. 26 Dec.
2012.
http://dictionary.reference.com/browse/s
permatogenesis>.
8. ^
http://visual.merriam-webster.com/pronun
ciation.php?id=animal-kingdom/simple-org
anisms-echinoderms/29852&title=mesohyl

9. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p20.
10. ^ "testis."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 21 Sep. 2011.
http://www.answers.com/topic/testis
11. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p20.
12. ^
"spermatogenesis." Dictionary.com
Unabridged. Random House, Inc. 26 Dec.
2012.
http://dictionary.reference.com/browse/s
permatogenesis>.
13. ^
http://visual.merriam-webster.com/pronun
ciation.php?id=animal-kingdom/simple-org
anisms-echinoderms/29852&title=mesohyl

14. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p20.
15. ^ Peterson,
Kevin J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

16. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (c850my) {based on
evolution of sponge) c850my}
17. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). (1351my)
18. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005). (600?)

MORE INFO
[1] "Proteoglycan." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 12 Aug. 2011.
http://www.answers.com/topic/proteoglyca
n

[2] D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p18-19
[3] D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p17
 
[1] Oocyte (female egg) release from
sponge, sperm release from sponge,
FIgure from: D. T. Anderson,
''Invertebrate Zoology'', Oxford
University Press, Second Edition,
2001. COPYRIGHTED
source: D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001.


[2] Combination of image from: Brusca
and Brusca, ''Invertebrates'', Second
Edition, 2003,
http://www.oceanicresearch.org/sponges
.html and D. T. Anderson,
''Invertebrate Zoology'', Oxford
University Press, Second Edition,
2001. COPYRIGHTED
source: http://www.museums.org.za/bio/me
tazoa.htm

650,000,000 YBN
41) The start of the 60 million year
(Varanger) Ice Age (650-590 mybn).3

FOO
TNOTES
1. ^ Proc. Ntl. Acad. Sci. USA Vol
91, pp 6743-6750, July
1994 "Proterozoic and Early Cambrian
protists: Evidence for accelerating
evolutionary tempo" Andrew H Knoll
2. ^
Proc. Ntl. Acad. Sci. USA Vol 91, pp
6743-6750, July 1994 "Proterozoic and
Early Cambrian protists: Evidence for
accelerating evolutionary
tempo" Andrew H Knoll
3. ^ Proc. Ntl. Acad.
Sci. USA Vol 91, pp 6743-6750, July
1994 "Proterozoic and Early Cambrian
protists: Evidence for accelerating
evolutionary tempo" Andrew H Knoll
 
[1] Snowball Earth 600 to 750 million
years ago Earth was incased in ice for
prolong periods of time and each global
glacial event ended under severe
greenhouse conditions. This late
Precambrian planet-wide glaciation is
known as “Snowball Earth” and is an
extension on Sturtian- Varangian
glaciation. UNKNOWN
source: http://geology.fullerton.edu/whe
nderson/Fal201L2005/snowballearth/images
/snoballearth.jpg


[2] Snowball Earth Begins UNKNOWN
source: http://www.gambassa.com/gambassa
files/images/images/1310/20090528_snowba
ll_earth_v1.jpg

650,000,000 YBN
10 11 12
69) Cells that group as tissues that
are arranged in layers evolve in
metazoans.7

Unlike the Porifera, in the Placozoa
and all later metazoans, cells group as
tissues.8 9

FOOTNOTES
1. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p2-3.
2. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p2-3.
3. ^ D. T. Anderson,
"Invertebrate Zoology", Oxford
University Press, Second Edition, 2001,
p2-3.
4. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p2-3.
5. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p2-3.
6. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004), p494.
7. ^
D. T. Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p2-3.
8. ^ D. T. Anderson,
"Invertebrate Zoology", Oxford
University Press, Second Edition, 2001,
p2-3.
9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p494.
10. ^ Peterson, Kevin
J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

11. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p491-493. (c750)
{c750MYBN (Ctenophores are first
metazoans with tissues}

MORE INFO
[1]
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=12289&tree=0.1

 
[1] Description This is an example
of a ctenophore, Bathocyroe fosteri,
which is a mesopelagic species. Date
Source Description This is
an example of a ctenophore, Bathocyroe
fosteri, which is a mesopelagic
species. Date Source
[1] Author Photo courtesy of
Marsh Youngbluth Author Photo
courtesy of Marsh Youngbluth PD
source: http://upload.wikimedia.org/wiki
pedia/commons/2/21/Bathocyroe_fosteri.jp
g


[2] Light diffracting along the comb
rows of a Mertensia ovum. The right
lower portion of the body is
regenerating from previous damage.
Source: NOAA Photo Gallery/ Photo by
Kevin Raskoff PD
source: http://upload.wikimedia.org/wiki
pedia/commons/4/42/LightRefractsOf_comb-
rows_of_ctenophore_Mertensia_ovum.jpg

650,000,000 YBN
20 21
79) The Metazoan Phylum "Placozoa"
evolves.12 13

Placozoans look like amoebas but are
multicellular.14 The only known
species is Trichoplax adhaerens
{TriKOPlaKS15 aDHEReNZ}. Trichoplax
lives in the sea and feeds on single
celled organisms, mostly algae. There
are only 4 cell types in Trichoplax
compared to the more than 200 cell
types in humans. Trichoplax has two
main cell layers, like a cnidarian or
ctenophore. Between these two layers
are a few contractile cells that are
similar to muscle cells16 , however
placozoans have no muscle or nerve
cells17 18 .

Trichoplax has the lowest content of
DNA of any metazoan, about two-thirds
that in sponges, and only 10 times that
of bacteria.19

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=11212&tree=0.1

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=11212&tree=0.1

5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
6. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=11212&tree=0.1

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ based on "Trichomonas."
The American Heritage Stedman's Medical
Dictionary. Houghton Mifflin Company,
2002. Answers.com 27 Dec. 2012.
http://www.answers.com/topic/trichomonas

9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p494.
10. ^ Grell, K.G.,
Gruner, H.E., Kilian, E.F., 1980.
Einfu¨hrung. In: Graner, H.E. (Ed.),
Lehrbuch der speziellen Zoologie, Vol.
1: Wirbellose Tiere: I. Einfu¨hrung
Protozoa, Placozoa, Porifera. Fischer,
Stuttgart.
11. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
13. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=11212&tree=0.1

14. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
15. ^ based on "Trichomonas."
The American Heritage Stedman's Medical
Dictionary. Houghton Mifflin Company,
2002. Answers.com 27 Dec. 2012.
http://www.answers.com/topic/trichomonas

16. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p494.
17. ^ Grell, K.G.,
Gruner, H.E., Kilian, E.F., 1980.
Einfu¨hrung. In: Graner, H.E. (Ed.),
Lehrbuch der speziellen Zoologie, Vol.
1: Wirbellose Tiere: I. Einfu¨hrung
Protozoa, Placozoa, Porifera. Fischer,
Stuttgart.
18. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
19. ^ Meglitsch, P.A., and F.R. Schram.
Invertebrate Zoology. Oxford University
Press, USA, 1991, p53.
20. ^ Peterson, Kevin
J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

21. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). {780 mybn}

MORE INFO
[1] Srivastava, Mansi et al.
“The Trichoplax genome and the nature
of placozoans.” Nature 454.7207
(2008) :
955-960. http://www.nature.com/nature/j
ournal/v454/n7207/abs/nature07191.html

[2] Dellaporta, Stephen L. et al.
“Mitochondrial genome of Trichoplax
adhaerens supports Placozoa as the
basal lower metazoan phylum.”
Proceedings of the National Academy of
Sciences 103.23 (2006) : 8751 -8756.
Print. http://www.pnas.org/content/103/
23/8751.full

 
[1] Description Trichoplax sp.
from Australia in light
microscopy Date February
2006 Source Oliver Voigt Author
Oliver Voigt CC
source: http://upload.wikimedia.org/wiki
pedia/commons/c/c3/Trichoplax_mic.jpg


[2] from ediacara of australia
source: http://www.ucmp.berkeley.edu/ven
dian/dickinsonia.html

650,000,000 YBN
19 20 21
223) The Fungi "Chytridiomycota"
{KI-TriDEO-mI-KO-Tu) evolves (includes
all Chytridiomycetes
{KI-TriDEO-mI-SE-TEZ}12 )).13 14 15

The chytrids are primitive fungi and
are mostly saprobic (feed on dead
species, decomposing chitin and
keratin). Many chytrids are aquatic
(mostly found in freshwater)16 and
some species are unicellular.17

FOOTNOT
ES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ "Chytridiomycetes." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/chytridiomy
cetes-1

4. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
5. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
6. ^
http://www.catalogueoflife.org/annual-ch
ecklist/2008/browse_taxa.php?path=0,5597
&selected_taxon=5597

7. ^ "Chytridiomycetes." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/chytridiomy
cetes-1

8. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
9. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
10. ^
http://www.catalogueoflife.org/annual-ch
ecklist/2008/browse_taxa.php?path=0,5597
&selected_taxon=5597

11. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
12. ^
"Chytridiomycetes." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/chytridiomy
cetes-1

13. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
14. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
15. ^
http://www.catalogueoflife.org/annual-ch
ecklist/2008/browse_taxa.php?path=0,5597
&selected_taxon=5597

16. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
17. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
18. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
19. ^
http://www.abdn.ac.uk/rhynie/fungi.htm
20. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849 (2002);
doi:10.1038/nrg929, (2002). (1460mybn)
21. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000mybn)

MORE INFO
[1]
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=71577&tree=0.1

[2]
http://en.wikipedia.org/wiki/Chytridiomy
cota

[3]
http://howjsay.com/index.php?word=chytri
diomycetes&submit=Submit

[4] Kirk, et al., "Dictionary of
Fungi", 2008, p142
Northern Russia18  
[1] Chytrids (Chytridiomycota): The
Primitive Fungi These fungi are
mostly aquatic, are notable for having
a flagella on the cells (a flagella is
a tail, somewhat like a tail on a sperm
or a pollywog), and are thought to be
the most primitive type of
fungi. actual photo comes
from: http://www.csupomona.edu/~jcclark
/classes/bot125/resource/graphics/chy_al
l_sph.html
source: http://www.davidlnelson.md/Cazad
ero/Fungi.htm


[2] Chytridiomycota - Blastocladiales
- zoospore of Allomyces (phase contrast
illumination) X 2000
source: http://www.mycolog.com/chapter2b
.htm

640,000,000 YBN
19 20 21 22 23
83) The first nerve cell (neuron), and
nervous system evolves in the ancestor
of the Ctenophores and Cnidarians.14 15
This leads to the first ganglion and
brain.16 This is the earliest touch
and sound detection, and memory.17

As time continues in the evolution of
the metazoans, the number of neurons
increases while the size of neurons
decreases, showing that more neurons
and smaller neurons, similar to
transistors in a computer, give an
organism more memory and as a result a
selective advantage in survival.18

FOOT
NOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
(presumably)
2. ^ Ted Huntington.
3. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005). (presumably)
4. ^ Ted Huntington.
5. ^ Richard Cowen,
"History of Life", (Malden, MA:
Blackwell, 2005). (presumably)
6. ^ D. T. Anderson,
"Invertebrate Zoology", Oxford
University Press, Second Edition, 2001,
p2,30.
7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
(presumably)
8. ^ Ted Huntington.
9. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005). (presumably)
10. ^ D. T. Anderson,
"Invertebrate Zoology", Oxford
University Press, Second Edition, 2001,
p2,30.
11. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
(presumably)
12. ^ Ted Huntington.
13. ^ Ted Huntington.
14. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005). (presumably)
15. ^ D. T. Anderson,
"Invertebrate Zoology", Oxford
University Press, Second Edition, 2001,
p2,30.
16. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
(presumably)
17. ^ Ted Huntington.
18. ^ Ted Huntington.
19. ^ Peterson,
Kevin J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

20. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
(presumably) {775 MYBN (estimate based
on Ctenophora as first with nerve and
muscle and Ctenophora evolving
c750mybn)(before c700MYBN} {750 MYBN
(estimate based on Ctenophora as first
with nerve and muscle and Ctenophora
evolving c750mybn}
21. ^ S OOta and N Saitou,
"Phylogenetic relationship of muscle
tissues deduced from superimposition of
gene trees.", Mol Biol Evol (1999)
16(6):
856-867. http://mbe.oxfordjournals.org/
content/16/6/856.abstract
{Saitou_1999.
pdf} {775 MYBN (estimate based on
Ctenophora as first with nerve and
muscle and Ctenophora evolving
c750mybn)(before c700MYBN} {775 MYBN
(estimate based on Ctenophora as first
with nerve and muscle and Ctenophora
evolving c750mybn)(before
c700MYBN)(before c700MYBN}
22. ^ Richard Cowen,
"History of Life", (Malden, MA:
Blackwell, 2005). (presumably) {775
MYBN (estimate based on Ctenophora as
first with nerve and muscle and
Ctenophora evolving c750mybn)(before
c700MYBN}
23. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
(presumably) {574mybn}

MORE INFO
[1] Ghysen, A. (2003). The origin
and evolution of the nervous system.
The International journal of
developmental biology , 47 (7-8),
555-562. http://view.ncbi.nlm.nih.gov/p
ubmed/14756331

[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p491-493. (c750mybn)
 
[1] English: Drawing of Purkinje cells
(A) and granule cells (B) from pigeon
cerebellum by Santiago Ramón y Cajal,
1899; Instituto Santiago Ramón y
Cajal, Madrid, Spain. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/1/15/PurkinjeCell.jpg


[2] figure from: D. T. Anderson,
''Invertebrate Zoology'', Oxford
University Press, Second Edition, 2001,
p39. COPYRIGHTED
source: D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p39.

640,000,000 YBN
9 10 11 12
96) Muscle cells evolve in the ancestor
of the Ctenophores and Cnidarians.7
Both the earliest known muscle and
nerve cells are found in Ctenophores
and Cnidarians.8

FOOTNOTES
1. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
2. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
3. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
4. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
5. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
6. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
7. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
8. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
}
9. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

10. ^ Katja Seipel, Volker Schmid,
Evolution of striated muscle: Jellyfish
and the origin of triploblasty,
Developmental Biology, Volume 282,
Issue 1, 1 June 2005, Pages 14-26, ISSN
0012-1606, DOI:
10.1016/j.ydbio.2005.03.032. (http://ww
w.sciencedirect.com/science/article/pii/
S0012160605002095)
{Schmid_20050309.pdf
} {775 MYBN (estimate based on
Ctenophora as first with nerve and
muscle and Ctenophora evolving
c750mybn)(before c700MYBN} {750 MYBN
(estimate based on Ctenophora as first
with nerve and muscle and Ctenophora
evolving c750mybn}
11. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p491-493.
(c750mybn) {775 MYBN (estimate based on
Ctenophora as first with nerve and
muscle and Ctenophora evolving
c750mybn)(before c700MYBN} {775 MYBN
(estimate based on Ctenophora as first
with nerve and muscle and Ctenophora
evolving c750mybn)(before
c700MYBN)(before c700MYBN}
12. ^ S OOta and N
Saitou, "Phylogenetic relationship of
muscle tissues deduced from
superimposition of gene trees.", Mol
Biol Evol (1999) 16(6):
856-867. http://mbe.oxfordjournals.org/
content/16/6/856.abstract
{Saitou_1999.
pdf} {775 MYBN (estimate based on
Ctenophora as first with nerve and
muscle and Ctenophora evolving
c750mybn)(before c700MYBN}
 
[1] Figure from: D. T. Anderson,
''Invertebrate Zoology'', Oxford
University Press, Second Edition, 2001,
p39. COPYRIGHTED
source: D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p39.


[2] Derek E. G. Briggs and Richard A.
Fortey, ''Wonderful Strife:
Systematics, Stem Groups, and the
Phylogenetic Signal of the Cambrian
Radiation'', Paleobiology , Vol. 31,
No. 2, Supplement. Macroevolution:
Diversity, Disparity, Contingency:
Essays in Honor of Stephen Jay Gould
(Spring, 2005), pp.
94-112 http://www.jstor.org/stable/2548
2671 COPYRIGHTED
source: http://www.jstor.org/stable/2548
2671

640,000,000 YBN
5 6 7
225) A closeable mouth evolves for the
first time, in the ancestor of all
ctenophores and cnidarians.4

FOOTNOTES
1. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p2-3.
2. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p2-3.
3. ^ D. T. Anderson,
"Invertebrate Zoology", Oxford
University Press, Second Edition, 2001,
p2-3.
4. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p2-3.
5. ^ Peterson,
Kevin J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

6. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p2-3. {c750MYBN
(all metazoans but sponges have a
closable mouth}
7. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p491-493.
(c750) {c750MYBN (all metazoans but
sponges have a closable mouth}

MORE INFO
[1]
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=12289&tree=0.1

 
[1] Description This is an example
of a ctenophore, Bathocyroe fosteri,
which is a mesopelagic species. Date
Source Description This is
an example of a ctenophore, Bathocyroe
fosteri, which is a mesopelagic
species. Date Source
[1] Author Photo courtesy of
Marsh Youngbluth Author Photo
courtesy of Marsh Youngbluth PD
source: http://upload.wikimedia.org/wiki
pedia/commons/2/21/Bathocyroe_fosteri.jp
g


[2] Light diffracting along the comb
rows of a Mertensia ovum. The right
lower portion of the body is
regenerating from previous damage.
Source: NOAA Photo Gallery/ Photo by
Kevin Raskoff PD
source: http://upload.wikimedia.org/wiki
pedia/commons/4/42/LightRefractsOf_comb-
rows_of_ctenophore_Mertensia_ovum.jpg

640,000,000 YBN
11 12 13 14 15
414) The female gonad (the first ovary)
evolves in the ancestor of Ctenophores
and Cnidarians.9 10

FOOTNOTES
1. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p48.
2. ^
http://species-identification.org/specie
s.php?species_group=zsao&id=589&menuentr
y=groepen

3. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p48.
4. ^
http://species-identification.org/specie
s.php?species_group=zsao&id=589&menuentr
y=groepen

5. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p48.
6. ^
http://species-identification.org/specie
s.php?species_group=zsao&id=589&menuentr
y=groepen

7. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p48.
8. ^
http://species-identification.org/specie
s.php?species_group=zsao&id=589&menuentr
y=groepen

9. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p48.
10. ^
http://species-identification.org/specie
s.php?species_group=zsao&id=589&menuentr
y=groepen

11. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

12. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

13. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005). (580my)
{based on evolution of cnidaria) 580my}
14. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p477-490. (c700my)
15. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1298my)

MORE INFO
[1] "Proteoglycan." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 12 Aug. 2011.
http://www.answers.com/topic/proteoglyca
n

[2] D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p18-19
[3] D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p17
[4] Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004).
(c850my)
[5] S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1351my)
[6] Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005). (600?)
 
[1] From: Brusca and Brusca,
''Invertebrates'', Second Edition,
2003. COPYRIGHTED
source: Brusca and Brusca,
"Invertebrates", Second Edition, 2003


[2] Figure 3.8 Anthozoa. (a) Anemone
(Actiniaria), showing the pharynx,
mesenteries, mesenterial filamnets and
acontia. (b) Structure of a mesenterial
filament in transverse section. (c)
Scleractinian coral, showing calcareous
skeleton and coenenchyme. (d)
Gorgonian, showing skeleton made up of
a horny axial rod and spicules in the
mesogloea (after Pearse et al 1987).
(e) Alcyonarian soft coral, showing
spicular skeleton in the
mesogloea. From: D. T. Anderson,
''Invertebrate Zoology'', Oxford
University Press, Second Edition,
2001. COPYRIGHTED
source: D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001.

640,000,000 YBN
26 27
523) The animal Phylum Ctenophora
{Ti-noF-R-u12 } evolves (comb
jellies).13

Like the Cnidarians, the Ctenophores
are diploblastic; they have two
embryonic germ layers- the ectoderm
{EKTeDRM14 } and the endoderm
{eNDeDRM15 } which become the adult
epidermis and gastrodermis,
respectively. The middle mesenchyme
{meSeNKIM16 }, a watery gelatinous
fluid, never produces the complex
organs seen in triploblastic Metazoa.17


The main body cavity of the ctenophores
is also the digestive chamber, and they
have a simple nerve net.18

Unlike cnidarians, ctenophores lack
stinging cells, there is no alternation
of generations in the life cycle, and
ctenophores are never colonial.19 20 21


On the surface of the body are eight
equally spaced comb plates, called
ctenes {TENZ22 }. Each ctene is
composed of a band of cilia. The ctenes
provide most of the movement for the
ctenophores.23

Ctenophores are hermaphroditic. Ovaries
and testies differentiate from the
endoderm. The gametes are released
through temporary gonopores
{GoN-o-PORZ24 }, and fertilization is
external.25

FOOTNOTES
1. ^ "ctenophore." Dictionary.com
Unabridged. Random House, Inc. 02 May.
2013.
http://dictionary.reference.com/browse/c
tenophore>.
2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p491-493.
3. ^ "ctenophore."
Dictionary.com Unabridged. Random
House, Inc. 02 May. 2013.
http://dictionary.reference.com/browse/c
tenophore>.
4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p491-493.
5. ^ "ctenophora."
Dictionary.com Unabridged. Random
House, Inc. 02 May. 2013.
http://dictionary.reference.com/browse/c
tenophora>.
6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p491-493.
7. ^ "ectoderm." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 01 Jan. 2013.
http://www.answers.com/topic/ectoderm
8. ^ "endoderm." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 01
Jan. 2013.
http://www.answers.com/topic/endoderm
9. ^ "mesenchyme." Dictionary.com
Unabridged. Random House, Inc. 31 Dec.
2012.
http://dictionary.reference.com/browse/m
esenchyme>.
10. ^ {ULSF: Note that this info is
taken from cnidaria, but is the same
for ctenophora} Brusca and Brusca,
"Invertebrates", 2003, p225,274.
11. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p491-493.
12. ^ "ctenophora."
Dictionary.com Unabridged. Random
House, Inc. 02 May. 2013.
http://dictionary.reference.com/browse/c
tenophora>.
13. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p491-493.
14. ^ "ectoderm." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 01 Jan. 2013.
http://www.answers.com/topic/ectoderm
15. ^ "endoderm." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 01
Jan. 2013.
http://www.answers.com/topic/endoderm
16. ^ "mesenchyme." Dictionary.com
Unabridged. Random House, Inc. 31 Dec.
2012.
http://dictionary.reference.com/browse/m
esenchyme>.
17. ^ {ULSF: Note that this info is
taken from cnidaria, but is the same
for ctenophora} Brusca and Brusca,
"Invertebrates", 2003, p225,274.
18. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p491-493.
19. ^
http://www.imas.utas.edu.au/zooplankton/
image-key/ctenophora

20. ^ Brusca and Brusca,
"Invertebrates", 2003, p269-270.
21. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p491-493.
22. ^ Henderson, I.F., and W.D.
Henderson 1920A Dictionary of
Scientific Terms, Pronunciation,
Derivation, and Definition of Terms in
Biology, Botony, Zoology, Anatomy,
Cyctology, Embroyology, Physiology. Van
Nostrand.
http://books.google.com/books?id=ky0wAAA
AYAAJ.
http://books.google.com/books?id
=ky0wAAAAYAAJ&pg=PA65&dq=ctene+pronounce
d
23. ^ Brusca and Brusca,
"Invertebrates", 2003, p274-275.
24. ^
"gonopore." Dictionary.com Unabridged.
Random House, Inc. 03 Jun. 2013.
http://dictionary.reference.com/browse/g
onopore>.
25. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p47.
26. ^ Peterson,
Kevin J., and Nicholas J. Butterfield.
“Origin of the Eumetazoa: Testing
Ecological Predictions of Molecular
Clocks Against the Proterozoic Fossil
Record.” Proceedings of the National
Academy of Sciences of the United
States of America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

27. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p491-493. (c750)
 
[1] Description This is an example
of a ctenophore, Bathocyroe fosteri,
which is a mesopelagic species. Date
Source Description This is
an example of a ctenophore, Bathocyroe
fosteri, which is a mesopelagic
species. Date Source
[1] Author Photo courtesy of
Marsh Youngbluth Author Photo
courtesy of Marsh Youngbluth PD
source: http://upload.wikimedia.org/wiki
pedia/commons/2/21/Bathocyroe_fosteri.jp
g


[2] Light diffracting along the comb
rows of a Mertensia ovum. The right
lower portion of the body is
regenerating from previous damage.
Source: NOAA Photo Gallery/ Photo by
Kevin Raskoff PD
source: http://upload.wikimedia.org/wiki
pedia/commons/4/42/LightRefractsOf_comb-
rows_of_ctenophore_Mertensia_ovum.jpg

635,000,000 YBN
4
6413) The start of the Ediacaran
Period.2

A large increase in the evolutionary
turnover rate of acritarchs is thought
to be the result of the evolution of
the nervous system and gut in the
eumetazoa (all ctenophora, cnidaria,
and bilateria).3

FOOTNOTES
1. ^ Knoll, Andrew H. et al. “A New
Period for the Geologic Time Scale.”
Science 305.5684 (2004): 621 –622.
Print. http://www.sciencemag.org/conten
t/305/5684/621.short

2. ^ Knoll, Andrew H. et al. “A New
Period for the Geologic Time Scale.”
Science 305.5684 (2004): 621 –622.
Print. http://www.sciencemag.org/conten
t/305/5684/621.short

3. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

4. ^ Knoll, Andrew H. et al. “A New
Period for the Geologic Time Scale.”
Science 305.5684 (2004): 621 –622.
Print. http://www.sciencemag.org/conten
t/305/5684/621.short

 
[1] Description English: The 'golden
spike' marking the Global Boundary
Stratotype Section and Point (GSSP) at
the base of the Ediacaran Period Date
16 August 2008 Source Own work
Original filename =
DSC07914.JPG Author Bahudhara CC
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/6/6f/Ediacaran_GSSP_
-_closeup.JPG/1280px-Ediacaran_GSSP_-_cl
oseup.JPG


[2] Geologic Time Scale 2009 UNKNOWN
source: http://www.geosociety.org/scienc
e/timescale/timescl.pdf

630,000,000 YBN
56 57 58 59
82) The Animal Phylum Cnidaria
{NIDAREeo} evolves (the ancestor of sea
anemones, sea pens, corals, and
jellyfish).33 34 35 36 Cnidaria also
evolve the earliest animal eye.37 38

Cnidaria are primarily radially
symmetrical animals with tentacles,
have a single body cavity with only one
opening to take in food and to release
wastes, and have specialized stinging
cells.39

Cnidarians have two alternate body
plans, the polyp and the medusa
{miDUSe40 }. A sea anemone or Hydra is
a typical polyp: fixed to the ground
with mouth on top.41 Corals are
colonial marine polyps that secrete
calcareous {KaL-KAR-E-uS42 } (calcium
carbonate43 ) skeletons44 which they
live inside of45 . The medusa form is
upside down compared to the polyp
form46 , and is free swimming. A
jellyfish has a typical medusa form,
swimming through the open sea. Many
cnidarians have both polyp and medusa
forms in a single life cycle.47

Polyps often reproduce by budding; a
new baby polyp clone grows on the side
of the parent.48 When cnidaria
reproduce sexually, sperm are released
into the water and fertilization is
usually external.49

Digestion in Cnidarians starts in the
gastrovascular cavity, but once the
food is reduced to particles small
enough to enter the digestive cells of
the gastrodermis, digestion is
completed inside the cell
(intracellularly).50

Cnidarians have a nervous system which
is a network without a centralized
structure51 52 . They also have muscles
which are contracted to propel them.53


Cnidarians see in black or white,
because their eyes have only one
pigment; for color vision the eye must
have more than one pigment.54 55

FOOTNO
TES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p477-490.
3. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
4. ^
"Cnidaria." The Columbia Electronic
Encyclopedia, Sixth Edition. Columbia
University Press., 2011. Answers.com 22
Jul. 2011.
http://www.answers.com/topic/cnidaria
5. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p41.
6. ^ Megan
O'Connor, Anders Garm, Dan-E Nilsson,
"Structure and optics of the eyes of
the box jellyfish Chiropsella
bronzie.", Journal Of Comparative
Physiology A Neuroethology Sensory
Neural And Behavioral Physiology
(2009), Volume: 195, Issue: 6, Pages:
557-569. http://www.mendeley.com/resear
ch/structure-and-optics-of-the-eyes-of-t
he-box-jellyfish-chiropsella-bronzie/

7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
8. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p477-490.
9. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
10. ^
"Cnidaria." The Columbia Electronic
Encyclopedia, Sixth Edition. Columbia
University Press., 2011. Answers.com 22
Jul. 2011.
http://www.answers.com/topic/cnidaria
11. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p41.
12. ^ Megan
O'Connor, Anders Garm, Dan-E Nilsson,
"Structure and optics of the eyes of
the box jellyfish Chiropsella
bronzie.", Journal Of Comparative
Physiology A Neuroethology Sensory
Neural And Behavioral Physiology
(2009), Volume: 195, Issue: 6, Pages:
557-569. http://www.mendeley.com/resear
ch/structure-and-optics-of-the-eyes-of-t
he-box-jellyfish-chiropsella-bronzie/

13. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
14. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p477-490.
15. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
16. ^
"Cnidaria." The Columbia Electronic
Encyclopedia, Sixth Edition. Columbia
University Press., 2011. Answers.com 22
Jul. 2011.
http://www.answers.com/topic/cnidaria
17. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p41.
18. ^ Megan
O'Connor, Anders Garm, Dan-E Nilsson,
"Structure and optics of the eyes of
the box jellyfish Chiropsella
bronzie.", Journal Of Comparative
Physiology A Neuroethology Sensory
Neural And Behavioral Physiology
(2009), Volume: 195, Issue: 6, Pages:
557-569. http://www.mendeley.com/resear
ch/structure-and-optics-of-the-eyes-of-t
he-box-jellyfish-chiropsella-bronzie/

19. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
20. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p477-490.
21. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
22. ^
"Cnidaria." The Columbia Electronic
Encyclopedia, Sixth Edition. Columbia
University Press., 2011. Answers.com 22
Jul. 2011.
http://www.answers.com/topic/cnidaria
23. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p41.
24. ^ Megan
O'Connor, Anders Garm, Dan-E Nilsson,
"Structure and optics of the eyes of
the box jellyfish Chiropsella
bronzie.", Journal Of Comparative
Physiology A Neuroethology Sensory
Neural And Behavioral Physiology
(2009), Volume: 195, Issue: 6, Pages:
557-569. http://www.mendeley.com/resear
ch/structure-and-optics-of-the-eyes-of-t
he-box-jellyfish-chiropsella-bronzie/

25. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p31.
26. ^ "medusa."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 01 Jan. 2013.
http://www.answers.com/topic/medusa
27. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p477-490.
28. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p477-490.
29. ^ "coral." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 23 Sep.
2012.
http://www.answers.com/topic/coral
30. ^ Levine, "The Earth Through Time",
2006, p338.
31. ^ Levine, "The Earth Through
Time", 2006, p338.
32. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p477-490.
33. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
34. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p477-490.
35. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
36. ^
"Cnidaria." The Columbia Electronic
Encyclopedia, Sixth Edition. Columbia
University Press., 2011. Answers.com 22
Jul. 2011.
http://www.answers.com/topic/cnidaria
37. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p41.
38. ^ Megan
O'Connor, Anders Garm, Dan-E Nilsson,
"Structure and optics of the eyes of
the box jellyfish Chiropsella
bronzie.", Journal Of Comparative
Physiology A Neuroethology Sensory
Neural And Behavioral Physiology
(2009), Volume: 195, Issue: 6, Pages:
557-569. http://www.mendeley.com/resear
ch/structure-and-optics-of-the-eyes-of-t
he-box-jellyfish-chiropsella-bronzie/

39. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p31.
40. ^ "medusa."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 01 Jan. 2013.
http://www.answers.com/topic/medusa
41. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p477-490.
42. ^ "calcareous."
Dictionary.com Unabridged. Random
House, Inc. 24 May. 2013.
http://dictionary.reference.com/browse/c
alcareous>.
43. ^ "calcareous." The Concise Oxford
Dictionary of Archaeology. Oxford
University Press, 2002, 2003.
Answers.com 23 Sep. 2012.
http://www.answers.com/topic/calcareous
44. ^ "coral." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 23 Sep.
2012.
http://www.answers.com/topic/coral
45. ^ Levine, "The Earth Through Time",
2006, p338.
46. ^ Levine, "The Earth Through
Time", 2006, p338.
47. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p477-490.
48. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p477-490.
49. ^ D. T. Anderson,
"Invertebrate Zoology", Oxford
University Press, Second Edition, 2001,
p48.
50. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p42.
51. ^ Bullock,
T.H., O. Breidbach, and W. Kutsch. The
Nervous Systems of Invertebrates: An
Evolutionary and Comparative Approach.
Birkhäuser Basel, 1994. Experientia:
Supplementum. http://books.google.com/b
ooks?id=dW5e6FHOH-4C&pg=PA9

52. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p477-490.
53. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p477-490.
54. ^ "Biology: Colour-blind", Nature
463, 1003 (25 February 2010)
55. ^ Megan
O'Connor,Anders Garm,Justin N.
Marshall,Nathan S. Hart,Peter
Ekström,Charlotta Skogh, and Dan-Eric
Nilsson, "Visual pigment in the lens
eyes of the box jellyfish Chiropsella
bronzie", Proc. R. Soc. B June 22, 2010
277 (1689) 1843-1848; published ahead
of print February 10, 2010,
doi:10.1098/rspb.2009.2248
http://rspb.royalsocietypublishing.org
/content/277/1689/1843

56. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

57. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p477-490. (c700my)
58. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005). (580my)
59. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1298my)

MORE INFO
[1] Collins, A.G. (2002).
"Phylogeny of Medusozoa and the
Evolution of Cnidarian Life Cycles"
(PDF). Journal of Evolutionary Biology
15 (3): 418–432.
doi:10.1046/j.1420-9101.2002.00403.x. h
ttp://cima.uprm.edu/~n_schizas/CMOB_8676
/Collins2002.pdf

[2] Philippe, H. (April 2009).
"Phylogenomics Revives Traditional
Views on Deep Animal Relationships".
Current Biology 19: 706–712.
doi:10.1016/j.cub.2009.02.052. PMID
19345102. http://www.sciencedirect.com/
science/article/pii/S0960982209008057

[3] doi:10.1038/4631003b; Published
online 24 February
2010 http://www.nature.com/nature/journ
al/v463/n7284/full/4631003b.html

 
[1] Octocorals Stylatula elongata –
White Sea Pen UNKNOWN
source: http://pt-lobos.com/cnidarianimg
/white_sea_pens.jpg


[2] Sea nettles, Chrysaora
quinquecirrha CC
source: http://upload.wikimedia.org/wiki
pedia/commons/3/36/Sea_nettles.jpg

600,000,000 YBN
17 18 19 20 21 22 23 24 25
91) The start of the Ediacaran
{EDEoKRiN10 } soft-bodied invertebrate
fossils.11

The sudden appearance of Ediacaran
fossils may relate to the accumulation
of free oxygen in the atmosphere and
sea, which may permit an oxidative
metabolism.12


Because the Ediacaran animals are
soft-bodied, they are infrequently
preserved.13

FOOTNOTES
1. ^ "Ediacaran." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/ediacaran
2. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
3. ^ "Ediacaran." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/ediacaran
4. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
5. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
6. ^ "Ediacaran." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/ediacaran
7. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
8. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
9. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
10. ^ "Ediacaran." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/ediacaran
11. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
12. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
13. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329.
14. ^ McMenamin, M. A. S. (1996).
"Ediacaran biota from Sonora, Mexico".
Proceedings of the National Academy of
Sciences (USA) 93:
4990–4993. http://www.pnas.org/conten
t/93/10/4990.full.pdf

15. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
16. ^ Meert, J.
G.; Gibsher, A. S.; Levashova, N. M.;
Grice, W. C.; Kamenov, G. D.; Rybanin,
A. (2010). "Glaciation and ~770 Ma
Ediacara (?) Fossils from the Lesser
Karatau Microcontinent, Kazakhstan".
Gondwana Research 19 (4): 867–880.
doi:10.1016/j.gr.2010.11.008. http://ww
w.sciencedirect.com/science/article/pii/
S1342937X10002005

17. ^ McMenamin, M. A. S. (1996).
"Ediacaran biota from Sonora, Mexico".
Proceedings of the National Academy of
Sciences (USA) 93:
4990–4993. http://www.pnas.org/conten
t/93/10/4990.full.pdf

18. ^ Ben Waggoner, "The Ediacaran
Biotas in Space and Time", Integrative
and Comparative Biology , Vol. 43, No.
1 (Feb., 2003), pp.
104-113. http://www.jstor.org/stable/38
84845
{Waggoner_200302xx.pdf}
19. ^ H. J. Hofmann, G. M. Narbonne and
J. D. Aitken, "Ediacaran remains from
intertillite beds in northwestern
Canada", Geology, December, 1990, v.
18, p.
1199-1202. http://geology.gsapubs.org/c
ontent/18/12/1199.abstract
{Hofmann_Edi
acaran_Fossils_1990.pdf}
20. ^ Knoll, Andrew H. et al. “A New
Period for the Geologic Time Scale.”
Science 305.5684 (2004): 621 –622.
Print. http://www.sciencemag.org/conten
t/305/5684/621.short

21. ^ Knoll, Andrew H. et al. “A New
Period for the Geologic Time Scale.”
Science 305.5684 (2004): 621 –622.
Print. http://www.sciencemag.org/conten
t/305/5684/621.short

22. ^ Harold Levin, "The Earth Through
Time", Eighth Edition, 2006,
p258-264,329. {630 mybn}
23. ^ Richard Cowen,
"History of Life", (Malden, MA:
Blackwell, 2005). {575 mybn}
24. ^
http://www.uky.edu/KGS/education/timelin
e2.htm
{670 mybn}
25. ^ Meert, J. G.;
Gibsher, A. S.; Levashova, N. M.;
Grice, W. C.; Kamenov, G. D.; Rybanin,
A. (2010). "Glaciation and ~770 Ma
Ediacara (?) Fossils from the Lesser
Karatau Microcontinent, Kazakhstan".
Gondwana Research 19 (4): 867–880.
doi:10.1016/j.gr.2010.11.008. http://ww
w.sciencedirect.com/science/article/pii/
S1342937X10002005


MORE INFO
[1] Ivantsov, A. Yu (2004). "New
Proarticulata from the Vendian of the
Arkhangel'sk Region" (PDF).
Paleontological Journal 38 (3):
247–253
[2] Peterson, Kevin J., and Nicholas J.
Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.short

Sonora, Mexico14 |Adelaide, Australia15
| Lesser Karatau Microcontinent,
Kazakhsta16  

[1] A general view of the life in the
time frame from about 605 to 542
million years ago (the Vendian), is
found at this New Zealand site which
concentrates on the Ediacaran epoch; it
mentions Australian and other
geographic localities where the
assemblages have been found. The fossil
life is represented entirely by
creatures with soft parts only. It is
suggested that these may be ancestral
to later phylla observed at the
beginning of the Paleozoic. Below is a
chart presenting typical Ediacaran
fauna, followed by an artist's
depiction of life on the sea floor at
that time, and beneath that is a layout
of some actual fossils: PD
source: http://rst.gsfc.nasa.gov/Sect20/
800pxlife_in_the_ediacaran_sea.jpg


[2] A more general view of the life in
the time frame from about 600+ to 542
million years ago (end of Proterozoic
and Precambrian into the oldest
Cambrian), known as the Ediacaran or
Vendian, is found at this New Zealand
site; it mentions Australian and other
geographic localities where the
assemblages have been found. The fossil
life represents entirely creatures with
soft parts only and suggestions that
these may be ancestral to later phylla
observed at the beginning of the
Paleozoic. Below is an artist's sketch
of some of these creatures: UNKNOWN
source: http://www.fas.org/irp/imint/doc
s/rst/Sect20/vendintro.jpg

600,000,000 YBN
44 45 46
107) The Animals Bilaterians evolve
(metazoans with two sided symmetry).33
34 35
This is the first triploblastic
animal; an animal with a third
embryonic layer, the mesoderm
{meZuDRM36 }.37 This is also the
earliest animal brain.38

In most bilaterians food enters in one
end (the mouth) and waste exits at the
opposite end (the anus). There is an
advantage for sense organs like light,
sound, touch, smell, and taste
detection to be located on the head
near the mouth to help with getting
food.39

Unlike the diploblastic Cnidaria and
Ctenophora, bilaterians are
triploblastic.40 41 A third embryonic
layer, the mesoderm, lies between the
ectoderm and endoderm. This layer
increases the options for the
development of organs with specific
functions.42

This begins the Animal Subkingdom
"Bilateria".43

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p472-476.
2. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

3. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
4. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p69.
5. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p396-400.
6. ^ "mesoderm." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 27
Dec. 2012.
http://www.answers.com/topic/mesoderm
7. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p59.
8. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p472-476.
9. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

10. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
11. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p69.
12. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p396-400.
13. ^ "mesoderm." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 27
Dec. 2012.
http://www.answers.com/topic/mesoderm
14. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p59.
15. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p472-476.
16. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

17. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
18. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p69.
19. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p396-400.
20. ^ "mesoderm." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 27
Dec. 2012.
http://www.answers.com/topic/mesoderm
21. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p59.
22. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p396.
23. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p472-476.
24. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

25. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
26. ^
"mesoderm." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 27 Dec.
2012.
http://www.answers.com/topic/mesoderm
27. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p59.
28. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p396-400.
29. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p396.
30. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p69.
31. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p396-400.
32. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

33. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p472-476.
34. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

35. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
36. ^
"mesoderm." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 27 Dec.
2012.
http://www.answers.com/topic/mesoderm
37. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p59.
38. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p396-400.
39. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p396.
40. ^ D. T.
Anderson, "Invertebrate Zoology",
Oxford University Press, Second
Edition, 2001, p59.
41. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p472-476.
42. ^ D. T. Anderson, "Invertebrate
Zoology", Oxford University Press,
Second Edition, 2001, p59.
43. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

44. ^ Peterson, Kevin J., and Nicholas
J. Butterfield. “Origin of the
Eumetazoa: Testing Ecological
Predictions of Molecular Clocks Against
the Proterozoic Fossil Record.”
Proceedings of the National Academy of
Sciences of the United States of
America 102.27 (2005):
9547–9552. http://www.pnas.org/conten
t/102/27/9547.full.pdf+html

45. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p472-476. (630my)
46. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005). (575 (fossil is
older)
 
[1] Convoluta pulchra Smith and Bush
1991, a typical mud-inhabiting acoel
that feeds on diatoms
source: ?


[2] Figure from: Giribet, G. (2008).
Assembling the lophotrochozoan
(=spiralian) tree of life.
Philosophical Transactions of the Royal
Society B: Biological Sciences , 363
(1496), 1513-1522. URL
http://dx.doi.org/10.1098/rstb.2007.2241
http://rstb.royalsocietypublishing.org
/content/363/1496/1513 COPYRIGHTED
source: http://rstb.royalsocietypublishi
ng.org/content/363/1496/1513

600,000,000 YBN
21 22 23
403) The earliest extant bilaterian:
Acoelomorpha (the ancestor of acoela
flat worms and nemertodermatida).15 16
17

The Acoelomorpha lack a digestive
track, anus and coelom.18 19

Flatworms have no lungs or gills and
breathe through their skin. Flatworms
also have no circulating blood and so
their branched gut presumably
transports nutrients to all parts of
the body.20

FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p472-476.
2. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

3. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
4. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p472-476.
5. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

6. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
8. ^ "Acoelomorpha". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Acoelomorph
a

9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p472-476.
10. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

11. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
12. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
13. ^ "Acoelomorpha". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Acoelomorph
a

14. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p472-476.
15. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004),
p472-476.
16. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=201049&tree=0.1

17. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
18. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
19. ^ "Acoelomorpha". Wikipedia.